<< Chapter < Page Chapter >> Page >


Analitiese meetkunde, ook bekend as koördinaatmeetkunde en vroëer bekend as Cartesiese meetkunde,is die studie van meetkunde op grond van die beginsels van algebra en die Cartesiese koördinaatstelsel. Dit is gemoeid metdie definisie van meetkundige figure op 'n numeriese wyse en onttrek numeriese inlligting uit die voorstelling. Sommige beskoudie ontwikkeling van analitiese meetkunde as die begin van moderne wiskunde.

Afstand tussen twee punte

As ons die koördinate van die hoekpunte van 'n figuur het, dan kan ons die figuur op die Cartesiese vlak teken. Byvoorbeeld, neem die vierhoek ABCD met koördinate A(1,1), B(1,3), C(3,3) en D(1,3) en stel dit voor op die Cartesiese vlak. Dit word getoon in [link] .

Vierhoek ABCD voorgestel op die Cartesiese vlak

Om enige figuur voor te stel op die Cartesiese vlak, plaas ons 'n punt by elke gegewe koördinaat en verbind dan hierdie punte met reguitlyne. Een belangrike saak om op te let, is in die benoeming van die figuur. In bostaande voorbeeld, het ons die vierhoek ABCD genoem. Dit dui vir ons aan dat ons beweeg van punt A, na punt B, na punt C, na punt D en dan weer terug na punt A. Dus, wanneer jy gevra word om 'n figuur op die Cartesiese vlak te teken, moet jy hierdie benamingswyse gebruik. Soms word net sekere punte gegee en dan moet ons die ander punte vind deur gebruik te maak van die metodes wat ons verder in die hierdie hoofstuk gaan bespreek.

Afstand tussen twee punte

Een van die eenvoudigste dinge wat met analitiese meetkunde bereken kan word, is die afstand tussen twee punte. Afstand is a getal wat beskryf hoe ver twee punte van mekaar is. Byvoorbeeld, punt P het ( 2 , 1 ) as koördinate en punt Q het ( - 2 , - 2 ) as koördinate. Hoe ver is die punte P en Q van mekaar? In die figuur beteken dit, hoe lank is die stippellyn?

In die figuur kan gesien word dat lyn P R 3 eenhede lank is en lyn Q R 4 eenhede. P Q R het 'n regte hoek R . Dus kan die lengte van sy P Q bereken word deur Stelling van Pythagoras te gebruik:

P Q 2 = P R 2 + Q R 2 P Q 2 = 3 2 + 4 2 P Q = 3 2 + 4 2 = 5

Die lengte van P Q is gelyk aan die afstand tussen punte P en Q .

As 'n veralgemening van die idee, neem aan dat A enige punt is met ( x 1 ; y 1 ) as koördinate en B is enige ander punt met ( x 2 ; y 2 ) as koördinate.

Die formule vir die berekening van die afstand tussen twee punte word as volg afgelei. Die afstand tussen twee punte A en B is die lengte van die lyn A B . Volgens die Stelling van Pythagoras, word die lengte van A B gegee deur:

A B = A C 2 + B C 2

Ons sien

B C = y 2 - y 1 A C = x 2 - x 1

Dan is

A B = A C 2 + B C 2 = ( x 1 - x 2 ) 2 + ( y 1 - y 2 ) 2

Gevolglik, vir enige twee punte, ( x 1 ; y 1 ) en ( x 2 ; y 2 ) , is die formule:

Afstand= ( x 1 - x 2 ) 2 + ( y 1 - y 2 ) 2

Deur die formule te gebruik, word die afstand tussen twee punte P en Q met koördinate (2;1) en (-2;-2) as volg bereken. Gestel die koördinate van punt P is ( x 1 ; y 1 ) en die koördinate van punt Q is ( x 2 ; y 2 ) . Dan is die afstand:

Afstand = ( x 1 - x 2 ) 2 + ( y 1 - y 2 ) 2 = ( 2 - ( - 2 ) ) 2 + ( 1 - ( - 2 ) ) 2 = ( 2 + 2 ) 2 + ( 1 + 2 ) 2 = 16 + 9 = 25 = 5

Khan akademie video oor die afstandformule

Khan akademie video oor die afstandformule

Questions & Answers

Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Siyavula textbooks: wiskunde (graad 10) [caps]. OpenStax CNX. Aug 04, 2011 Download for free at http://cnx.org/content/col11328/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: wiskunde (graad 10) [caps]' conversation and receive update notifications?