<< Chapter < Page Chapter >> Page >

Modeling—in this first sense of a demonstration—connects instructional goals to students’ experiences by presenting real, vivid examples of behaviors or skills in a way that a student can practice directly, rather than merely talk about. There is often little need, when imitating a model, to translate ideas or instructions from verbal form into action. For students struggling with language and literacy, in particular, this feature can be a real advantage.

Modeling—as simplified representation

In a second meaning of modeling, a model is a simplified representation of a phenomenon that incorporates the important properties of the phenomenon. Models in this sense may sometimes be quite tangible, direct copies of reality; when I was in fourth grade growing up in California, for example, we made scale models of the Spanish missions as part of our social studies lessons about California history. But models can also be imaginary, though still based on familiar elements. In a science curriculum, for example, the behavior of gas molecules under pressure can be modeled by imagining the molecules as ping pong balls flying about and colliding in an empty room. Reducing the space available to the gas by making the room smaller, causes the ping pong balls to collide more frequently and vigorously, and thereby increases the pressure on the walls of the room. Increasing the space has the opposite effect. Creating an actual room full of ping pong balls may be impractical, of course, but the model can still be imagined.

Modeling in this second sense is not about altering students’ behavior, but about increasing their understanding of a newly learned idea, theory, or phenomenon. The model itself uses objects or events that are already familiar to students—simple balls and their behavior when colliding—and in this way supports students’ learning of new, unfamiliar material. Not every new concept or idea lends itself to such modeling, but many do: students can create models of unfamiliar animals, for example, or of medieval castles, or of ecological systems. Two-dimensional models—essentially drawings—can also be helpful: students can illustrate literature or historical events, or make maps of their own neighborhoods. The choice of model depends largely on the specific curriculum goals which the teacher needs to accomplish at a particular time.

Activating prior knowledge

Another way to connect curriculum goals to students’ experience is by activating prior knowledge , a term that refers to encouraging students to recall what they know already about new material being learned. Various formats for activating prior knowledge are possible. When introducing a unit about how biologists classify animal and plant species, for example, a teacher can invite students to discuss how they already classify different kinds of plants and animals. Having highlighted this informal knowledge, the teacher can then explore how the same species are classified by biological scientists, and compare the scientists’ classification schemes to the students’ own schemes. The activation does not have to happen orally, as in this example; a teacher can also ask students to write down as many distinct types of animals and plants that they can think of, and then ask students to diagram or map their relationships—essentially creating a concept map like the ones we described in Chapter 8 (Gurlitt, et al., 2006). Whatever the strategy used, activation helps by making students’ prior knowledge or experience conscious and therefore easier to link to new concepts or information.

Questions & Answers

Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
hi
Loga
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Educational psychology. OpenStax CNX. May 11, 2011 Download for free at http://cnx.org/content/col11302/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Educational psychology' conversation and receive update notifications?

Ask