<< Chapter < Page Chapter >> Page >
A pattern similar to a dart board with few concentric circles shown in white color on a red background. In the innermost circle, there are four black points on the circumference showing the positions of a restaurant. They are far apart from each other.
A GPS system attempts to locate a restaurant at the center of the bull’s-eye. The black dots represent each attempt to pinpoint the location of the restaurant. The dots are spread out quite far apart from one another, indicating low precision, but they are each rather close to the actual location of the restaurant, indicating high accuracy. (credit: Dark Evil)
A pattern similar to a dart board with a few concentric circles shown in white color on a red background. Near the outermost white circles there are four black points showing the positions of a restaurant. The black points are very close to each other.
In this figure, the dots are concentrated rather closely to one another, indicating high precision, but they are rather far away from the actual location of the restaurant, indicating low accuracy. (credit: Dark Evil)

Accuracy, precision, and uncertainty

The degree of accuracy and precision of a measuring system are related to the uncertainty    in the measurements. Uncertainty is a quantitative measure of how much your measured values deviate from a standard or expected value. If your measurements are not very accurate or precise, then the uncertainty of your values will be very high. In more general terms, uncertainty can be thought of as a disclaimer for your measured values. For example, if someone asked you to provide the mileage on your car, you might say that it is 45,000 miles, plus or minus 500 miles. The plus or minus amount is the uncertainty in your value. That is, you are indicating that the actual mileage of your car might be as low as 44,500 miles or as high as 45,500 miles, or anywhere in between. All measurements contain some amount of uncertainty. In our example of measuring the length of the paper, we might say that the length of the paper is 11 in., plus or minus 0.2 in. The uncertainty in a measurement, A size 12{A} {} , is often denoted as δA size 12{δA} {} (“delta A size 12{A} {} ”), so the measurement result would be recorded as A ± δA size 12{ +- δA } {} . In our paper example, the length of the paper could be expressed as 11  in. ± 0. 2 . size 12{ +- 0 "." 2 "." } {}

The factors contributing to uncertainty in a measurement include:

  1. Limitations of the measuring device,
  2. The skill of the person making the measurement,
  3. Irregularities in the object being measured,
  4. Any other factors that affect the outcome (highly dependent on the situation).

In our example, such factors contributing to the uncertainty could be the following: the smallest division on the ruler is 0.1 in., the person using the ruler has bad eyesight, or one side of the paper is slightly longer than the other. At any rate, the uncertainty in a measurement must be based on a careful consideration of all the factors that might contribute and their possible effects.

Making connections: Real-world connections – fevers or chills?

Uncertainty is a critical piece of information, both in physics and in many other real-world applications. Imagine you are caring for a sick child. You suspect the child has a fever, so you check his or her temperature with a thermometer. What if the uncertainty of the thermometer were 3 . C size 12{3 "." 0°C} {} ? If the child’s temperature reading was 37 . C size 12{"37" "." 0°C} {} (which is normal body temperature), the “true” temperature could be anywhere from a hypothermic 34 . C size 12{"34" "." 0°C} {} to a dangerously high 40 . C size 12{"40" "." 0°C} {} . A thermometer with an uncertainty of 3 . C size 12{3 "." 0°C} {} would be useless.

Questions & Answers

What is the difference between a principle and a law
the law is universally proved. The principal depends on certain conditions.
Dr
state Faraday first law
aliyu Reply
what does the speedometer of a car measure ?
Jyoti Reply
Car speedometer measures the rate of change of distance per unit time.
Moses
describe how a Michelson interferometer can be used to measure the index of refraction of a gas (including air)
WILLIAM Reply
using the law of reflection explain how powder takes the shine off a person's nose. what is the name of the optical effect?
WILLIAM
is higher resolution of microscope using red or blue light?.explain
WILLIAM
can sound wave in air be polarized?
WILLIAM Reply
Unlike transverse waves such as electromagnetic waves, longitudinal waves such as sound waves cannot be polarized. ... Since sound waves vibrate along their direction of propagation, they cannot be polarized
Astronomy
A proton moves at 7.50×107m/s perpendicular to a magnetic field. The field causes the proton to travel in a circular path of radius 0.800 m. What is the field strength?
Celedonio Reply
derived dimenionsal formula
Ajak Reply
what is the difference between mass and weight
Isru Reply
assume that a boy was born when his father was eighteen years.if the boy is thirteen years old now, how is his father in
Isru
what is head-on collision
Javaid Reply
what is airflow
Godswill Reply
derivative of first differential equation
Haruna Reply
why static friction is greater than Kinetic friction
Ali Reply
draw magnetic field pattern for two wire carrying current in the same direction
Ven Reply
An American traveler in New Zealand carries a transformer to convert New Zealand’s standard 240 V to 120 V so that she can use some small appliances on her trip.
nkombo Reply
What is the ratio of turns in the primary and secondary coils of her transformer?
nkombo
what is energy
Yusuf
How electric lines and equipotential surface are mutually perpendicular?
Abid Reply
The potential difference between any two points on the surface is zero that implies È.Ŕ=0, Where R is the distance between two different points &E= Electric field intensity. From which we have cos þ =0, where þ is the angle between the directions of field and distance line, as E andR are zero. Thus
MAHADEV
sorry..E and R are non zero...
MAHADEV
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask