<< Chapter < Page Chapter >> Page >

EKONOMIESE EN BESTUURSWETENSKAPPE

Graad 4

HOE MENSE ‘N BESTAAN VOER

Module 4

DIENSLEWERING, VERVAARDIGING EN GEBRUIK

  1. Die openbare- en privaatsektor

Die instansies wat dienste lewer, kan in twee groepe verdeel word:

(a)die openbare sektor

Hiermee verstaan ons al die besighede wat deur die staat befonds en bestuur word. Die staat is hoofsaaklik verantwoordelik vir dienste soos onderwys (skole), gesondheid (hospitale) en veiligheid (polisie), maar lewer ook dienste soos telekommunikasie (Telkom) en vervoer (Transnet). Hierdie sektor lewer elke dag ‘n groot klomp dienste waarvoor hulle baie geld benodig, en dit is waarom die inwoners van die land belasting moet betaal op hul inkomste en produkte wat gekoop word. Hierdie belasting moet dan aan die regering oorhandig word. Gesels ‘n bietjie met jou ouers oor die gedeelte van hul inkomste wat hul maandeliks/jaarliks aan die staat moet afstaan vir inkomstebelasting. Dan word daar ook belasting betaal op die meeste verbruiksartikels wat ons koop (BTW).

(b) Die privaatsektor

Dit is die individue en groepe wat hul eie besighede besit. Dit sluit in privaathospitale, privaatskole, winkels, vervoernetwerke (SAL&taxi’s) , beskerming (gewapende reaksiegroepe), ens.

Aktiwiteit 1

Om tussen die openbare en privaatsektor te onderskei [LU 4.3]

  1. Is jou skool deel van die openbare of privaatsektor?

..............................................................................................................

  1. Watter van jou en jou gesin se daaglikse behoeftes word deur die onderskeie sektore bedien?
Privaatsektor Openbare sektor
Bv. vervoer Bv. poswese
8.
  1. Wat is belasting?

Skryf voorbeelde neer van vervoer in jou omgewing en klassifiseer dit in die volgende tabelle:

Openbare sektor Privaatsektor

2. Vervaardiging en verbruik

Alle huishoudings verbruik produkte. Daardie produkte moet deur die produsent geproduseer (vervaardig) word. Die bakkery bak brood sodat die huisgesin daagliks van hul stapelvoedsel voorsien kan word. Om die mens (verbruiker) se behoeftes te bevredig, moet die produsent besluit watter produkte om te produseer. Die verbruiker vra sekere goedere aan en die produsent bied dit dan aan – VRAAG en AANBOD. Hoe meer ons ‘n produk benodig, hoe groter word die vraag daarna. So is die vraag na kompakskyfspelers groter as die vraag na outydse draaitafels.

Die entrepreneur wat ‘n sukses van sy besigheid wil maak, moet derhalwe die mark (behoefte van die verbruiker) baie goed bestudeer om seker te maak dat dit wat hy/sy wil verkoop, in aanvraag is en goed kan kompeteer met soortgelyke produkte.

Aktiwiteit 2

Om intrepreneurskennis toe te pas [LU 4.4]

Bestudeer die volgende skets van ‘n skoolmarkdag en beantwoord die vrae:

  1. Watter produkte op die skets word slegs een keer gebruik en dan nie weer nie?

......................................................................................................

......................................................................................................

......................................................................................................

......................................................................................................

......................................................................................................

......................................................................................................

  1. Watter produkte word herhaaldelik deur julle gesin gebruik?

......................................................................................................

......................................................................................................

......................................................................................................

......................................................................................................

  1. Watter produkte is duidelik in aanvraag by julle gesinslede?

......................................................................................................

......................................................................................................

......................................................................................................

......................................................................................................

  1. Vir watter produkte is daar nie ‘n groot aanvraag in julle gesin nie?

......................................................................................................

......................................................................................................

......................................................................................................

......................................................................................................

  1. Watter produk mis jy op hierdie skets? Watter leemte is daar in die mark vir jou as ‘n entrepreneur wat vinnig wil besigheid doen?

......................................................................................................

......................................................................................................

......................................................................................................

Baie geluk!

Jy begin sommer al klaar dink soos ‘n regte entrepreneur!!

In die volgende twee modules gaan ons kyk hoe jy ‘n entrepreneur kan word.

Assessering

LEERUITKOMS 4: ENTREPRENEURSKENNIS EN –VAARDIGHEDE

Die leerder is in staat om entrepreneurskennis, -vaardighede en -houdings te ontwikkel.

Assesseringstandaard

Dis duidelik wanneer die leerder:

  • onderskei tussen die entrepreneursaksies van koop, verkoop en produseer;
  • neem deel aan ‘n kermis of markdag by die skool en pas entrepreneurskennis en –vaardighede toe.

Memorandum

Bladsye 1 en 2

Onderskei tussen die openbare en privaatsektor aan die hand van voorbeelde uit leerders se eie lewe. Neem die leiding.

Bladsye 3 en 4

Gesels inleidend oor die vraag-/aanbodkonsep. Maak dan afleidings oor die vraag na sekere artikels op ’n markdag.

Questions & Answers

explain and give four Example hyperbolic function
Lukman Reply
_3_2_1
felecia
⅗ ⅔½
felecia
_½+⅔-¾
felecia
The denominator of a certain fraction is 9 more than the numerator. If 6 is added to both terms of the fraction, the value of the fraction becomes 2/3. Find the original fraction. 2. The sum of the least and greatest of 3 consecutive integers is 60. What are the valu
SABAL Reply
1. x + 6 2 -------------- = _ x + 9 + 6 3 x + 6 3 ----------- x -- (cross multiply) x + 15 2 3(x + 6) = 2(x + 15) 3x + 18 = 2x + 30 (-2x from both) x + 18 = 30 (-18 from both) x = 12 Test: 12 + 6 18 2 -------------- = --- = --- 12 + 9 + 6 27 3
Pawel
2. (x) + (x + 2) = 60 2x + 2 = 60 2x = 58 x = 29 29, 30, & 31
Pawel
ok
Ifeanyi
on number 2 question How did you got 2x +2
Ifeanyi
combine like terms. x + x + 2 is same as 2x + 2
Pawel
x*x=2
felecia
2+2x=
felecia
Mark and Don are planning to sell each of their marble collections at a garage sale. If Don has 1 more than 3 times the number of marbles Mark has, how many does each boy have to sell if the total number of marbles is 113?
mariel Reply
Mark = x,. Don = 3x + 1 x + 3x + 1 = 113 4x = 112, x = 28 Mark = 28, Don = 85, 28 + 85 = 113
Pawel
how do I set up the problem?
Harshika Reply
what is a solution set?
Harshika
find the subring of gaussian integers?
Rofiqul
hello, I am happy to help!
Shirley Reply
please can go further on polynomials quadratic
Abdullahi
hi mam
Mark
I need quadratic equation link to Alpa Beta
Abdullahi Reply
find the value of 2x=32
Felix Reply
divide by 2 on each side of the equal sign to solve for x
corri
X=16
Michael
Want to review on complex number 1.What are complex number 2.How to solve complex number problems.
Beyan
yes i wantt to review
Mark
use the y -intercept and slope to sketch the graph of the equation y=6x
Only Reply
how do we prove the quadratic formular
Seidu Reply
please help me prove quadratic formula
Darius
hello, if you have a question about Algebra 2. I may be able to help. I am an Algebra 2 Teacher
Shirley Reply
thank you help me with how to prove the quadratic equation
Seidu
may God blessed u for that. Please I want u to help me in sets.
Opoku
what is math number
Tric Reply
4
Trista
x-2y+3z=-3 2x-y+z=7 -x+3y-z=6
Sidiki Reply
can you teacch how to solve that🙏
Mark
Solve for the first variable in one of the equations, then substitute the result into the other equation. Point For: (6111,4111,−411)(6111,4111,-411) Equation Form: x=6111,y=4111,z=−411x=6111,y=4111,z=-411
Brenna
(61/11,41/11,−4/11)
Brenna
x=61/11 y=41/11 z=−4/11 x=61/11 y=41/11 z=-4/11
Brenna
Need help solving this problem (2/7)^-2
Simone Reply
x+2y-z=7
Sidiki
what is the coefficient of -4×
Mehri Reply
-1
Shedrak
the operation * is x * y =x + y/ 1+(x × y) show if the operation is commutative if x × y is not equal to -1
Alfred Reply
A soccer field is a rectangle 130 meters wide and 110 meters long. The coach asks players to run from one corner to the other corner diagonally across. What is that distance, to the nearest tenths place.
Kimberly Reply
Jeannette has $5 and $10 bills in her wallet. The number of fives is three more than six times the number of tens. Let t represent the number of tens. Write an expression for the number of fives.
August Reply
What is the expressiin for seven less than four times the number of nickels
Leonardo Reply
How do i figure this problem out.
how do you translate this in Algebraic Expressions
linda Reply
why surface tension is zero at critical temperature
Shanjida
I think if critical temperature denote high temperature then a liquid stats boils that time the water stats to evaporate so some moles of h2o to up and due to high temp the bonding break they have low density so it can be a reason
s.
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play




Source:  OpenStax, Ekonomiese en bestuurswetenskappe graad 4. OpenStax CNX. Sep 17, 2009 Download for free at http://cnx.org/content/col11085/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ekonomiese en bestuurswetenskappe graad 4' conversation and receive update notifications?

Ask