<< Chapter < Page Chapter >> Page >

7.3. shortest paths

7.3.1. properties of shortest paths

(From Wikipedia, the free encyclopedia)

In graph theory, the shortest path problem is the problem of finding a path between two vertices such that the sum of the weights of its constituent edges is minimized. An example is finding the quickest way to get from one location to another on a road map; in this case, the vertices represent locations and the edges represent segments of road and are weighted by the time needed to travel that segment.

Formally, given a weighted graph (that is, a set V of vertices, a set E of edges, and a real-valued weight function f : E → R), and one element v of V, find a path P from v to each v' of V so that

is minimal among all paths connecting v to v' .

Sometimes it is called the single-pair shortest path problem, to distinguish it from the following generalizations:

  • The single-source shortest path problem is a more general problem, in which we have to find shortest paths from a source vertex v to all other vertices in the graph.
  • The all-pairs shortest path problem is an even more general problem, in which we have to find shortest paths between every pair of vertices v, v' in the graph.

Both these generalizations have significantly more performant algorithms in practice than simply running a single-pair shortest path algorithm on all relevant pairs of vertices.

Algorithms

The most important algorithms for solving this problem are:

  • Dijkstra's algorithm — solves single source problem if all edge weights are greater than or equal to zero. Without worsening the run time, this algorithm can in fact compute the shortest paths from a given start point s to all other nodes.
  • Bellman-Ford algorithm — solves single source problem if edge weights may be negative.
  • A* search algorithm solves for single source shortest paths using heuristics to try to speed up the search
  • Floyd-Warshall algorithm — solves all pairs shortest paths.
  • Johnson's algorithm — solves all pairs shortest paths, may be faster than Floyd-Warshall on sparse graphs.
  • Perturbation theory; finds (at worst) the locally shortest path

Applications

Shortest path algorithms are applied in an obvious way to automatically find directions between physical locations, such as driving directions on web mapping websites like Mapquest.

If one represents a nondeterministic abstract machine as a graph where vertices describe states and edges describe possible transitions, shortest path algorithms can be used to find an optimal sequence of choices to reach a certain goal state, or to establish lower bounds on the time needed to reach a given state. For example, if vertices represents the states of a puzzle like a Rubik's Cube and each directed edge corresponds to a single move or turn, shortest path algorithms can be used to find a solution that uses the minimum possible number of moves.

In a networking or telecommunications mindset, this shortest path problem is sometimes called the min-delay path problem and usually tied with a widest path problem. e.g.: Shortest (min-delay) widest path or Widest shortest (min-delay) path.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Data structures and algorithms. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10765/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Data structures and algorithms' conversation and receive update notifications?

Ask