# 0.7 Graphs  (Page 9/21)

 Page 9 / 21

## 7.3.1. properties of shortest paths

In graph theory, the shortest path problem is the problem of finding a path between two vertices such that the sum of the weights of its constituent edges is minimized. An example is finding the quickest way to get from one location to another on a road map; in this case, the vertices represent locations and the edges represent segments of road and are weighted by the time needed to travel that segment.

Formally, given a weighted graph (that is, a set V of vertices, a set E of edges, and a real-valued weight function f : E → R), and one element v of V, find a path P from v to each v' of V so that

is minimal among all paths connecting v to v' .

Sometimes it is called the single-pair shortest path problem, to distinguish it from the following generalizations:

• The single-source shortest path problem is a more general problem, in which we have to find shortest paths from a source vertex v to all other vertices in the graph.
• The all-pairs shortest path problem is an even more general problem, in which we have to find shortest paths between every pair of vertices v, v' in the graph.

Both these generalizations have significantly more performant algorithms in practice than simply running a single-pair shortest path algorithm on all relevant pairs of vertices.

## Algorithms

The most important algorithms for solving this problem are:

• Dijkstra's algorithm — solves single source problem if all edge weights are greater than or equal to zero. Without worsening the run time, this algorithm can in fact compute the shortest paths from a given start point s to all other nodes.
• Bellman-Ford algorithm — solves single source problem if edge weights may be negative.
• A* search algorithm solves for single source shortest paths using heuristics to try to speed up the search
• Floyd-Warshall algorithm — solves all pairs shortest paths.
• Johnson's algorithm — solves all pairs shortest paths, may be faster than Floyd-Warshall on sparse graphs.
• Perturbation theory; finds (at worst) the locally shortest path

## Applications

Shortest path algorithms are applied in an obvious way to automatically find directions between physical locations, such as driving directions on web mapping websites like Mapquest.

If one represents a nondeterministic abstract machine as a graph where vertices describe states and edges describe possible transitions, shortest path algorithms can be used to find an optimal sequence of choices to reach a certain goal state, or to establish lower bounds on the time needed to reach a given state. For example, if vertices represents the states of a puzzle like a Rubik's Cube and each directed edge corresponds to a single move or turn, shortest path algorithms can be used to find a solution that uses the minimum possible number of moves.

In a networking or telecommunications mindset, this shortest path problem is sometimes called the min-delay path problem and usually tied with a widest path problem. e.g.: Shortest (min-delay) widest path or Widest shortest (min-delay) path.

where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
Got questions? Join the online conversation and get instant answers!