<< Chapter < Page Chapter >> Page >

2. хомогена диференцијална равенка

Ако за функцијата f ( x , y ) size 12{f \( x,y \) } {} важи

f ( tx , ty ) = t n f ( x , y ) size 12{f \( ital "tx", ital "ty" \) =t rSup { size 8{n} } f \( x,y \) } {} ,

таа се нарекува хомогена од n -ти ред.

Диференцијалната равенка од обликот

M ( x , y ) dx + N ( x , y ) dy = 0 size 12{M \( x,y \) ital "dx"+N \( x,y \) ital "dy"=0} {}

се нарекува хомогена диференцијална равенка ако функциите M ( x , y ) size 12{M \( x,y \) } {} и N ( x , y ) size 12{N \( x,y \) } {} се хомогени функции од ист ред. Хомогеноста на функциите кои се јавуваат во диференцијалната равенка овозможува таа да се запише во облик

dy dx = f y x . size 12{ { { ital "dy"} over { ital "dx"} } =f left ( { {y} over {x} } right ) "." } {}

Со воведување на смената

y x = z size 12{ { {y} over {x} } =z} {}

односно

y = zx size 12{y= ital "zx"} {}

и со нејзино диференцирање се добива

y ' = z ' x + z size 12{ { {y}} sup { ' }= { {z}} sup { ' }x+z} {}

или

dy dx = x dz dx + z size 12{ { { ital "dy"} over { ital "dx"} } =x { { ital "dz"} over { ital "dx"} } +z} {}

и по заменување во хомогената диференцијална равнка, се добива диференцијална равенка од облик

z ' x = f ( z ) z , size 12{ { {z}} sup { ' }x=f \( z \) - z,} {}

што укажува дека променливите во вака добиената диференцијална равенка може да се раздвојат.

Притоа:

  • Ако f ( z ) z 0 size 12{f \( z \) - z<>0} {} нејзиното решение е

dz f ( z ) z = dx x + ln C , size 12{ Int { { { ital "dz"} over {f \( z \) - z} } } = Int { { { ital "dx"} over {x} } } +"ln"C,} {}

  • ако f ( z ) = z size 12{f \( z \) =z} {} нејзиното решение е

dy y = dx x + ln C size 12{ Int { { { ital "dy"} over {y} } } = Int { { { ital "dx"} over {x} } } +"ln"C} {}

односно

y = Cx . size 12{y= ital "Cx" "." } {}

Пример 3.

Да се најде општото решение на диференцијалната равенка y 2 + x 2 y ' = xy y ' . size 12{y rSup { size 8{2} } +x rSup { size 8{2} } { {y}} sup { ' }= ital "xy {" ital {y}} sup { ' } "." } {}

РЕШЕНИЕ.

Оваа диференцијална равенка е хомогена од втор ред бидејки ако ја решиме по изводот се добива

y ' = y 2 xy x 2 , size 12{ { {y}} sup { ' }= { {y rSup { size 8{2} } } over { ital "xy" - x rSup { size 8{2} } } } ,} {}

а по делење на изразот од десната страна (и броителот и именителот) со x 2 size 12{x rSup { size 8{2} } } {} се добива

y ' = y x 2 y x 1 . size 12{ { {y}} sup { ' }= { { left ( { {y} over {x} } right ) rSup { size 8{2} } } over { { {y} over {x} } - 1} } "." } {}

Со воведување на смената y = zx size 12{y= ital "zx"} {} и нејзиниот извод y ' = z ' x + z size 12{ { {y}} sup { ' }= { {z}} sup { ' }x+z} {} , таа се трансформира во диференцијална равенка од обликот

z ' x + z = z 2 z 1 , size 12{ { {z}} sup { ' }x+z= { {z rSup { size 8{2} } } over {z - 1} } ,} {}

во која променливите се раздвојуваат

z 1 z dz = 1 x dx . size 12{ { {z - 1} over {z} } ital "dz"= { {1} over {x} } ital "dx" "." } {}

Решението на оваа равенка се добива по интегрирање

z 1 z dz = 1 x dx + ln C size 12{ Int { { {z - 1} over {z} } ital "dz"} = Int { { {1} over {x} } ital "dx"} +"ln"C} {} ,

и тоа е

z ln z = ln x + ln C size 12{z - "ln" \lline z \lline ="ln" \lline x \lline +"ln"C} {} ,

односно

z = ln ( Cxz ) size 12{z="ln" \( ital "Cxz" \) } {} .

Со враќање на старата променлива x преку смената y x = z size 12{ { {y} over {x} } =z} {} , општото решение е

Cy = e y x . size 12{ ital "Cy"=e rSup { size 8{ { {y} over {x} } } } "." } {}

Пример 4.

Да се најде партикуларното решение на диференцијалната равенка

( x y ' y ) arctg y x = x , size 12{ \( x { {y}} sup { ' } - y \) "arctg" { {y} over {x} } =x,} {} кое има вредност y = 0 size 12{y=0} {} за x = 1 . size 12{x=1 "." } {}

РЕШЕНИЕ:

Најпрво се бара општото решение на диференцијалната равенка. Таа е хомогена диференцијална равенка од прв ред бидејќи може да се запише во обликот

dy dx = 1 arctg y x + y x . size 12{ { { ital "dy"} over { ital "dx"} } = { {1} over {"arctg" { {y} over {x} } } } + { {y} over {x} } "." } {}

Со користење на смената y x = z size 12{ { {y} over {x} } =z} {} , односно y = zx size 12{y= ital "zx"} {} и изводот y ' = z ' x + z size 12{ { {y}} sup { ' }= { {z}} sup { ' }x+z} {} ,

во диференцијалната рвенка променливите се раздвојуваат бидејќи

z ' x = 1 arctg z . size 12{ { {z}} sup { ' }x= { {1} over {"arctg"`z} } "." } {}

Оваа равенка има општо решение

arctg z dz = dx x + ln C , size 12{ Int {"arctg"`z` ital "dz"} = Int { { { ital "dx"} over {x} } } +"ln"C,} {}

кое по решавање на интегралите е во облик

z arctg z 1 2 ln ( 1 + z 2 ) = ln Cx size 12{z`"arctg"`z - { {1} over {2} } "ln" \( 1+z rSup { size 8{2} } \) ="ln" ital "Cx"} {}

или

y x arctg y x 1 2 ln ( 1 + y x 2 2 ) = ln Cx . size 12{ { {y} over {x} } `"arctg"` { {y} over {x} } - { {1} over {2} } "ln" \( 1+ { {y} over {x rSup { size 8{2} } } } rSup { size 8{2} } \) ="ln" ital "Cx" "." } {}

Партикуларното решение ќе се добие со определување на константата C од почетните услови y = 0 size 12{y=0} {} кога x = 1 size 12{x=1} {} . Со замена на почетните услови во општото решение

1 2 ln 1 = ln C C = 1 size 12{ - { {1} over {2} } "ln"1="ln"C~ drarrow ~C=1} {} .

Значи партикуларното решение е

y x arctg y x 1 2 ln ( 1 + y x 2 2 ) = ln x size 12{ { {y} over {x} } `"arctg"` { {y} over {x} } - { {1} over {2} } "ln" \( 1+ { {y} over {x rSup { size 8{2} } } } rSup { size 8{2} } \) ="ln"x} {}

кое по антилогаритмирање е од обликот

x 2 + y 2 = e y x arctg y x size 12{ sqrt {x rSup { size 8{2} } +y rSup { size 8{2} } } =e rSup { size 8{ { {y} over {x} } ital "arctg" { {y} over {x} } } } } {} . ◄

2.1. равенка која се сведува на хомогена диференцијална равенка

Ако диференцијалната равенка е од облик

y ' = f ax + by + c a 1 x + b 1 y + c 1 , size 12{ { {y}} sup { ' }=f left ( { { ital "ax"+ ital "by"+c} over {a rSub { size 8{1} } x+b rSub { size 8{1} } y+c rSub { size 8{1} } } } right ),} {}

со смената

x = u + α , dx = du y = v + β , dy = dv alignl { stack { size 12{x=u+α,~ ital "dx"= ital "du"} {} #size 12{y=v+β,~ ital "dy"= ital "dv"} {} } } {}

каде u , v size 12{u,`v} {} се нови променливи а α , β size 12{α,`β} {} се константи, таа се сведува на

dv du = f au + bv + + + c a 1 u + b 1 v + a 1 α + b 1 β + c 1 size 12{ { { ital "dv"} over { ital "du"} } =f left ( { { ital "au"+ ital "bv"+aα+bβ+c} over {a rSub { size 8{1} } u+b rSub { size 8{1} } v+a rSub { size 8{1} } α+b rSub { size 8{1} } β+c rSub { size 8{1} } } } right )} {} .

Идејата за оваа смена е равенката да се сведе на хомогена и затоа константите α , β size 12{α,`β} {} се определуваат преку системот равенки

+ + c = 0 a 1 α + b 1 β + c 1 = 0 . { size 12{alignl { stack { left lbrace aα+bβ+c=0 {} #right none left lbrace a rSub { size 8{1} } α+b rSub { size 8{1} } β+c rSub { size 8{1} } =0 "." {} # right no } } lbrace } {}

При тоа:

  • Ако детерминантата на овој систем Δ = ab 1 ba 1 0 size 12{Δ= ital "ab" rSub { size 8{1} } - ital "ba" rSub { size 8{1} }<>0} {} еднозначно се определуваат константите α , β size 12{α,`β} {} и равенката се сведува на хомогена диференцијална равенка

dv du = f au + bv a 1 u + b 1 v size 12{ { { ital "dv"} over { ital "du"} } =f left ( { { ital "au"+ ital "bv"} over {a rSub { size 8{1} } u+b rSub { size 8{1} } v} } right )} {}

која може да се реши со постапката за решавање на хомогена диференцијална равенка.

  • Ако детерминантата на системот Δ = ab 1 ba 1 = 0 size 12{Δ= ital "ab" rSub { size 8{1} } - ital "ba" rSub { size 8{1} } =0} {} со смената

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Математика 2. OpenStax CNX. Feb 03, 2016 Download for free at http://legacy.cnx.org/content/col11378/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Математика 2' conversation and receive update notifications?

Ask