<< Chapter < Page Chapter >> Page >

The extent to which the vapor pressure of a solvent is lowered and the boiling point is elevated depends on the total number of solute particles present in a given amount of solvent, not on the mass or size or chemical identities of the particles. A 1 m aqueous solution of sucrose (342 g/mol) and a 1 m aqueous solution of ethylene glycol (62 g/mol) will exhibit the same boiling point because each solution has one mole of solute particles (molecules) per kilogram of solvent.

Calculating the boiling point of a solution

What is the boiling point of a 0.33 m solution of a nonvolatile solute in benzene?


Use the equation relating boiling point elevation to solute molality to solve this problem in two steps.

This is a diagram with three boxes connected with two arrows pointing to the right. The first box is labeled, “Molality of solution,” followed by an arrow labeled, “1,” pointing to a second box labeled, “Change in boiling point,” followed by an arrow labeled, “2,” pointing to a third box labeled, “New boiling point.”
  1. Calculate the change in boiling point.
    Δ T b = K b m = 2.53 ° C m −1 × 0.33 m = 0.83 ° C
  2. Add the boiling point elevation to the pure solvent’s boiling point.
    Boiling temperature = 80.1 ° C + 0.83 ° C = 80.9 ° C

Check your learning

What is the boiling point of the antifreeze described in [link] ?


109.2 °C

Got questions? Get instant answers now!

The boiling point of an iodine solution

Find the boiling point of a solution of 92.1 g of iodine, I 2 , in 800.0 g of chloroform, CHCl 3 , assuming that the iodine is nonvolatile and that the solution is ideal.


We can solve this problem using four steps.

This is a diagram with five boxes oriented horizontally and linked together with arrows numbered 1 to 4 pointing from each box in succession to the next one to the right. The first box is labeled, “Mass of iodine.” Arrow 1 points from this box to a second box labeled, “Moles of iodine.” Arrow 2 points from this box to to a third box labeled, “Molality of solution.” Arrow labeled 3 points from this box to a fourth box labeled, “Change in boiling point.” Arrow 4 points to a fifth box labeled, “New boiling point.”
  1. Convert from grams to moles of I 2 using the molar mass of I 2 in the unit conversion factor.
    Result: 0.363 mol
  2. Determine the molality of the solution from the number of moles of solute and the mass of solvent, in kilograms.
    Result: 0.454 m
  3. Use the direct proportionality between the change in boiling point and molal concentration to determine how much the boiling point changes.
    Result: 1.65 °C
  4. Determine the new boiling point from the boiling point of the pure solvent and the change.
    Result: 62.91 °C
    Check each result as a self-assessment.

Check your learning

What is the boiling point of a solution of 1.0 g of glycerin, C 3 H 5 (OH) 3 , in 47.8 g of water? Assume an ideal solution.


100.12 °C

Got questions? Get instant answers now!

Distillation of solutions

Distillation is a technique for separating the components of mixtures that is widely applied in both in the laboratory and in industrial settings. It is used to refine petroleum, to isolate fermentation products, and to purify water. This separation technique involves the controlled heating of a sample mixture to selectively vaporize, condense, and collect one or more components of interest. A typical apparatus for laboratory-scale distillations is shown in [link] .

Figure a contains a photograph of a common laboratory distillation unit. Figure b provides a diagram labeling typical components of a laboratory distillation unit, including a stirrer/heat plate with heat and stirrer speed control, a heating bath of oil or sand, stirring means such as boiling chips, a still pot, a still head, a thermometer for boiling point temperature reading, a condenser with a cool water inlet and outlet, a still receiver with a vacuum or gas inlet, a receiving flask for holding distillate, and a cooling bath.
A typical laboratory distillation unit is shown in (a) a photograph and (b) a schematic diagram of the components. (credit a: modification of work by “Rifleman82”/Wikimedia commons; credit b: modification of work by “Slashme”/Wikimedia Commons)

Oil refineries use large-scale fractional distillation to separate the components of crude oil. The crude oil is heated to high temperatures at the base of a tall fractionating column , vaporizing many of the components that rise within the column. As vaporized components reach adequately cool zones during their ascent, they condense and are collected. The collected liquids are simpler mixtures of hydrocarbons and other petroleum compounds that are of appropriate composition for various applications (e.g., diesel fuel, kerosene, gasoline), as depicted in [link] .

Questions & Answers

to what volume must 8.32 NaOH be diluted to its analytical concentration 0.20 M
Sheriza Reply
weight in mg 1.76 mole of I
the types of hydrocarbons
Ohanaka Reply
u are mad go and open textbook
aliphatic and aromatic hydrocarbons
I don't use to see the messages
Adazion Reply
how can you determine the electronegativity of a compound or in molecules
Shalom Reply
when u move from left to right in a periodic table the negativity increases
Are you trying to say that the elctronegativity increases down the group and decreases across the period?
yes and also increases across the period
for instance when you look at one group of elements in a periodic table electronegativity decreases when you go across the table electronegativity increases. hydrogen is more electronegative than sodium, potassium of that group. oxygen is more electronegative than carbon.
i hope we all know that organic compounds have carbon as their back bone
OK,Thank you so much for the answer. I am happy now
Adazion Reply
can I ask you a question now
what is the oxidation number of nitrogen, oxygen and sulphur
5, -2 & -2
What is an atom?
Adazion Reply
is a smallest particle of a chemical element that can exist
can I ask a question
it is a substance that cannot be broken down into simpler units by any chemical reaction
An atom is the smallest part of an element dat can take part in chemical reaction.
an atom is the smallest part of an element that can take part in a chemical reaction nd still retain it chemical properties
what are the branches of an atomic mass
Adazion Reply
Still waiting for answers for a very long time now
Please May una reply me ooo
that question is very strong oooo
most of the questions I asked wasn't answered what's the problem guys?
Adazion Reply
hi, there is no problems ooo
between H2SO4 and HCL which is the strongest dehydrating agent ?
HCl is the strongest dehydrating agent
ᴡʜᴀᴛ ᴡɪʟʟ ᴏʙsᴇʀᴠᴇᴅ ɪғ ʟᴇᴀᴅ(ɪɪ)ɴɪᴛʀᴀᴛᴇs ɪs ᴀᴅᴅᴇᴅ ᴏɴ ᴛᴏ sᴏᴅɪᴜᴍ ɪᴏᴅɪᴅᴇ sᴏʟᴜᴛɪᴏɴ
Gawaar Reply
what is the functional group of alkanals
Frankyx Reply
can someone explain salt analysis properly
Find the number of calcium atoms present in a sample weighing 2.0*10 raise to the power of -3g
Mfoniso Reply
What does avogadro's law states?
Debora Reply
what is chemistry?
Adazion Reply
Is a branch of science that deals with matter in relation to energy
permanent hardness of water can be removed by ?
Okorie Reply
What are the basic area in in chemistry
John Reply
acid, base and salt
Why do people study chemistry
becuz chemistry is the study of elements, nature and etc
and also the study of matter and atom
is chemistry hard
the answer to that question depends on you
what kind of question are u asking fam?
his asking if chemistry is hard
not really just a matter of you willing to study

Get the best Chemistry course in your pocket!

Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?