<< Chapter < Page Chapter >> Page >
A diagram is shown. At the center of the diagram is a T-shaped structure labeled, “Anode ( positive sign ),” that is on a mesh-like background labeled, “Iron screen.” The anode is connected to a box labeled, “Voltage source,” by a line, and the voltage source is connected to one of two L-shaped structures that surround the anode. They are labeled, “Cathode ( negative sign ).” Above the cathode on the right side of the diagram is a tube connected to a collection chamber labeled, “N a metal,” that has a lower outlet labeled, “N a outlet.” Surrounding all of these components is a blue background labeled, “Molten N a C l,” and a series of tubes that form a square outside the diagram. They have an opening in the upper right corner labeled, “Inlet for N a C l.” At the top of the diagram is a large tube with an upward-facing arrow drawn on it. The tube turns right, has a right-facing arrow on it, and is labeled, “C l subscript 2 outlet.”
Pure sodium metal is isolated by electrolysis of molten sodium chloride using a Downs cell. It is not possible to isolate sodium by electrolysis of aqueous solutions of sodium salts because hydrogen ions are more easily reduced than are sodium ions; as a result, hydrogen gas forms at the cathode instead of the desired sodium metal. The high temperature required to melt NaCl means that liquid sodium metal forms.

The preparation of aluminum

The preparation of aluminum utilizes a process invented in 1886 by Charles M. Hall , who began to work on the problem while a student at Oberlin College in Ohio. Paul L. T. Héroult discovered the process independently a month or two later in France. In honor to the two inventors, this electrolysis cell is known as the Hall–Héroult cell    . The Hall–Héroult cell is an electrolysis cell for the production of aluminum. [link] illustrates the Hall–Héroult cell.

The production of aluminum begins with the purification of bauxite, the most common source of aluminum. The reaction of bauxite, AlO(OH), with hot sodium hydroxide forms soluble sodium aluminate, while clay and other impurities remain undissolved:

AlO ( OH ) ( s ) + NaOH ( a q ) + H 2 O ( l ) Na [ Al ( OH ) 4 ] ( a q )

After the removal of the impurities by filtration, the addition of acid to the aluminate leads to the reprecipitation of aluminum hydroxide:

Na [ Al ( OH ) 4 ] ( a q ) + H 3 O + ( a q ) Al ( OH ) 3 ( s ) + Na + ( a q ) + 2H 2 O ( l )

The next step is to remove the precipitated aluminum hydroxide by filtration. Heating the hydroxide produces aluminum oxide, Al 2 O 3 , which dissolves in a molten mixture of cryolite, Na 3 AlF 6 , and calcium fluoride, CaF 2 . Electrolysis of this solution takes place in a cell like that shown in [link] . Reduction of aluminum ions to the metal occurs at the cathode, while oxygen, carbon monoxide, and carbon dioxide form at the anode.

A diagram is shown. At the center of the diagram are two black squares, each labeled, “Carbon anode ( positive sign ),” and connected by forked tubes to a horizontal tube labeled with a positive sign. The carbon anodes are submerged in a green liquid labeled, “A l subscript 2 O subscript 3 dissolved in molten N a subscript 3 A l F subscript 6.” It is held in place by a three-sided, double layered container which is labeled, “Steel sheet,” on the outer layer and, “Ceramic,” on the inner layer. The carbon anodes are surrounded by bubbles labeled, “Bubbles of O subscript 2, C O, and C O subscript 2.” Below the green liquids lies a silver layer labeled, “Molten aluminum,” and a black layer labeled, “Carbon cathode ( negative sign ).” Above the diagram is an outlet tube labeled with an upward-facing arrow and the words, “H F and particulates exhaust to filter plant.”
An electrolytic cell is used for the production of aluminum. The electrolysis of a solution of cryolite and calcium fluoride results in aluminum metal at the cathode, and oxygen, carbon monoxide, and carbon dioxide at the anode.

The preparation of magnesium

Magnesium is the other metal that is isolated in large quantities by electrolysis. Seawater, which contains approximately 0.5% magnesium chloride, serves as the major source of magnesium. Addition of calcium hydroxide to seawater precipitates magnesium hydroxide. The addition of hydrochloric acid to magnesium hydroxide, followed by evaporation of the resultant aqueous solution, leaves pure magnesium chloride. The electrolysis of molten magnesium chloride forms liquid magnesium and chlorine gas:

MgCl 2 ( a q ) + Ca ( OH ) 2 ( a q ) Mg ( OH ) 2 ( s ) + CaCl 2 ( a q )
Mg ( OH ) 2 ( s ) + 2HCl ( a q ) MgCl 2 ( a q ) + 2H 2 O ( l )
MgCl 2 ( l ) Mg ( l ) + Cl 2 ( g )

Some production facilities have moved away from electrolysis completely. In the next section, we will see how the Pidgeon process leads to the chemical reduction of magnesium.

Chemical reduction

It is possible to isolate many of the representative metals by chemical reduction    using other elements as reducing agents. In general, chemical reduction is much less expensive than electrolysis, and for this reason, chemical reduction is the method of choice for the isolation of these elements. For example, it is possible to produce potassium, rubidium, and cesium by chemical reduction, as it is possible to reduce the molten chlorides of these metals with sodium metal. This may be surprising given that these metals are more reactive than sodium; however, the metals formed are more volatile than sodium and can be distilled for collection. The removal of the metal vapor leads to a shift in the equilibrium to produce more metal (see how reactions can be driven in the discussions of Le Châtelier’s principle in the chapter on fundamental equilibrium concepts).

Questions & Answers

What is the generic name for the compound
Orisanmi Reply
what is the formular for methane
Tamaranimiweremi Reply
what is zero gravity
Blessing Reply
every object is that zero gravity
Probably when an object is in space and there are no nearby masses that pull her, and exert gravity
Alright. .good job
And all majesty to God, (وَهُوَ ٱلَّذِی خَلَقَ ٱلَّیۡلَ وَٱلنَّهَارَ وَٱلشَّمۡسَ وَٱلۡقَمَرَۖ كُلࣱّ فِی فَلَكࣲ یَسۡبَحُونَ) [سورة الأنبياء 33 And it is He who created the night and the day and the sun and the moon; all [heavenly bodies] in an orbit are swimming. General theory of relativity in Qur
what is lattice energy
Getrude Reply
why is CO a neutral oxide and CO2 an acidic oxide
Emmanuel Reply
Because when CO2 dissolves in water forming a weak acid. CO does not dissolve in water as it has strong triple bond.
What is acid
Progress Reply
which donate H+ or accept lone pair of electron
kinetic theory of matter and gas law
Victoria Reply
pls explain
what is clay
Thankgod Reply
material containing clay minerals. Clays develop plasticity when wet, due to a molecular film of water surrounding the clay particles, but become hard, brittle and non–plastic upon drying or firing. Most pure clay minerals are white or light-coloured, but natural clays show a variety of colours
due iron oxide. The four types of clay are Earthenware clay, Stoneware clay, Ball clay, and Porcelain. All of them can be used to make pottery, but the end result would differ a lot thanks to their different textures, colors, and flexibilities.
And do you know that god has created human from clay (وَلَقَدۡ خَلَقۡنَا ٱلۡإِنسَـٰنَ مِن صَلۡصَـٰلࣲ مِّنۡ حَمَإࣲ مَّسۡنُونࣲ) [سورة الحجر 26] And We did certainly create man out of clay from an altered black mud. You can install Quran from paly store for free with translations.
darw a periodic table
Hazard Reply
draw a periodic table
You will arrange the elements into row and coloumns according to increasing proton number. You may want to use symbols or their names. Hydrogen, Helium, etc. God has created all these elements from nothing, in Islam we know God is the creator.
why are you drawing a periodic table? why not just print one from the internet and use as a reference
Great thought
how are you?
Abel Reply
alright , how about you
am fine
your name is Agbo?
my name is amel
l use the email of my husband
Define organic chemistry
Edward Reply
It is the chemistry concerning molecules that have Carbon skeletons and hydrogen atoms. We find organic molecules like in plants, living derivatives, etc.
what's matter
Joshua Reply
Anything that can be to cutting from all dimensions to halve. So you end up with 4 cubes of 5 cm side. Repeat with one of the cubes. 10, 5, 2.5, .., 0 1st 2nd 3rd Nth Un= a(r) ^ n-1
Anything that has mass and can reflect or absorb waves. GOD created everything from nothing only he can destroy it as prooved.
Suppose you have a cube of side 10 cm. Then you start cutting from all dimensions to halve. So you end up with 4 cubes of 5 cm side. Repeat with one of the cubes. 10, 5, 2.5, .., 0 1st 2nd 3rd Nth Un= a(r) ^ n-1 0= 10 (1/2)^n-1 0= (1/2) ^ n-1 Log0= (n-1) Log(1/2) - infinity =( n-1)
matter is anything that has mass,volume and can occupy space
what is electrolysis
Rabi Reply
good equation
differenciate between fat and oil
Mustapha Reply
what is the meaning of coordinate bond
Asmaa Reply
It is the alternative for dative which is a covalent bond but both electrons of the pair are from shared from the same (one) atom.
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?