# 7.5 Strengths of ionic and covalent bonds  (Page 4/8)

 Page 4 / 8

## The born-haber cycle

It is not possible to measure lattice energies directly. However, the lattice energy can be calculated using the equation given in the previous section or by using a thermochemical cycle. The Born-Haber cycle    is an application of Hess’s law that breaks down the formation of an ionic solid into a series of individual steps:

• $\text{Δ}{H}_{\text{f}}^{°},$ the standard enthalpy of formation of the compound
• IE , the ionization energy of the metal
• EA , the electron affinity of the nonmetal
• $\text{Δ}{H}_{s}^{°},$ the enthalpy of sublimation of the metal
• D , the bond dissociation energy of the nonmetal
• Δ H lattice , the lattice energy of the compound

[link] diagrams the Born-Haber cycle for the formation of solid cesium fluoride. The Born-Haber cycle shows the relative energies of each step involved in the formation of an ionic solid from the necessary elements in their reference states.

We begin with the elements in their most common states, Cs( s ) and F 2 ( g ). The $\text{Δ}{H}_{s}^{°}$ represents the conversion of solid cesium into a gas, and then the ionization energy converts the gaseous cesium atoms into cations. In the next step, we account for the energy required to break the F–F bond to produce fluorine atoms. Converting one mole of fluorine atoms into fluoride ions is an exothermic process, so this step gives off energy (the electron affinity) and is shown as decreasing along the y -axis. We now have one mole of Cs cations and one mole of F anions. These ions combine to produce solid cesium fluoride. The enthalpy change in this step is the negative of the lattice energy, so it is also an exothermic quantity. The total energy involved in this conversion is equal to the experimentally determined enthalpy of formation, $\text{Δ}{H}_{\text{f}}^{°},$ of the compound from its elements. In this case, the overall change is exothermic.

Hess’s law can also be used to show the relationship between the enthalpies of the individual steps and the enthalpy of formation. [link] shows this for cesium chloride, CsCl 2 .

 Enthalpy of sublimation of Cs( s ) $\text{Cs}\left(s\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}\text{Cs}\left(g\right)\phantom{\rule{3em}{0ex}}\text{Δ}H=\text{Δ}{H}_{s}^{°}=76.5\text{kJ}$ One-half of the bond energy of Cl 2 $\frac{1}{2}\phantom{\rule{0.2em}{0ex}}{\text{Cl}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}\text{Cl}\left(g\right)\phantom{\rule{3em}{0ex}}\text{Δ}H=\phantom{\rule{0.2em}{0ex}}\frac{1}{2}\phantom{\rule{0.2em}{0ex}}D=122\text{kJ}$ Ionization energy of Na( g ) $\text{Na}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{Na}}^{\text{+}}\left(g\right)+{\text{e}}^{\text{−}}\phantom{\rule{3em}{0ex}}\text{Δ}H=IE=496\text{kJ}$ Negative of the electron affinity of Cl $\text{Cl}\left(g\right)+{\text{e}}^{\text{−}}\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{Cl}}^{\text{−}}\left(g\right)\phantom{\rule{3em}{0ex}}\text{Δ}H=\text{−}EA=-368\text{kJ}$ Negative of the lattice energy of NaCl( s ) ${\text{Na}}^{\text{+}}\left(g\right)+{\text{Cl}}^{\text{−}}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}\text{NaCl}\left(s\right)\phantom{\rule{3em}{0ex}}\text{Δ}H=\text{−Δ}{H}_{\text{lattice}}=?$ Enthalpy of formation of NaCl( s ), add steps 1–5 $\begin{array}{l}\text{Δ}H=\text{Δ}{H}_{f}^{°}=\text{Δ}{H}_{s}^{°}+\phantom{\rule{0.2em}{0ex}}\frac{1}{2}\phantom{\rule{0.2em}{0ex}}D+IE+\left(-EA\right)+\left(-\text{Δ}{H}_{\text{lattice}}\right)\\ \text{Na}\left(s\right)+\phantom{\rule{0.2em}{0ex}}\frac{1}{2}\phantom{\rule{0.2em}{0ex}}{\text{Cl}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}\text{NaCl}\left(s\right)=-411\text{kJ}\end{array}$

Thus, the lattice energy can be calculated from other values. For cesium chloride, using this data, the lattice energy is:

$\text{Δ}{H}_{\text{lattice}}=\left(411+109+122+496+368\right)\phantom{\rule{0.2em}{0ex}}\text{kJ}=770\phantom{\rule{0.2em}{0ex}}\text{kJ}$

The Born-Haber cycle may also be used to calculate any one of the other quantities in the equation for lattice energy, provided that the remainder is known. For example, if the relevant enthalpy of sublimation $\text{Δ}{H}_{s}^{°},$ ionization energy (IE), bond dissociation enthalpy (D), lattice energy Δ H lattice, and standard enthalpy of formation $\text{Δ}{H}_{\text{f}}^{°}$ are known, the Born-Haber cycle can be used to determine the electron affinity of an atom.

Lattice energies calculated for ionic compounds are typically much higher than bond dissociation energies measured for covalent bonds. Whereas lattice energies typically fall in the range of 600–4000 kJ/mol (some even higher), covalent bond dissociation energies are typically between 150–400 kJ/mol for single bonds. Keep in mind, however, that these are not directly comparable values. For ionic compounds, lattice energies are associated with many interactions, as cations and anions pack together in an extended lattice. For covalent bonds, the bond dissociation energy is associated with the interaction of just two atoms.

#### Questions & Answers

what is aromaticity
Usman Reply
aromaticity is a conjugated pi system specific to organic rings like benzene, which have an odd number of electron pairs within the system that allows for exceptional molecular stability
Pookieman
what is caustic soda
Ogbonna Reply
sodium hydroxide (NaOH)
Kamaluddeen
what is distilled water
Rihanat
is simply means a condensed water vapour
Kamaluddeen
advantage and disadvantage of water to human and industry
Abdulrahman Reply
a hydrocarbon contains 7.7 percent by mass of hydrogen and 92.3 percent by mass of carbon
Timothy Reply
how many types of covalent r there
JArim Reply
how many covalent bond r there
JArim
they are three 3
Adazion
TYPES OF COVALENT BOND-POLAR BOND-NON POLAR BOND-DOUBLE BOND-TRIPPLE BOND. There are three types of covalent bond depending upon the number of shared electron pairs. A covalent bond formed by the mutual sharing of one electron pair between two atoms is called a "Single Covalent bond.
Usman
what is an atom
Rabiu Reply
why is an atom
Rabiu
u answer me first
Adazion
Atom is indivisible particles which take place in chemical reactions
Samuel
OK
Adazion
what is neck mi nut
Hernandez Reply
what is half reaction?
Makinde Reply
wat is the chemical formular for zinc hydrozide
Ani Reply
Zn(OH-)2
Pookieman
what is atomicity
Simbiat Reply
A 45 ml of ph=1,hcl was reacted with a 55l ml of ph=13, naoh solution . what is the final ph
chamini Reply
what is coordination number
YERUMAKULA Reply
coordination number is the number of atoms or ions immediately surrounding a central atom in a complex or crystal
Chidera
what is isotope
Bukar
who is the father of chemistry
Roland Reply
Antoine Lavoisier. Father of modern chemistry
Yapi
Lavoisier
Simbiat
What is geometric isomerism
Imoh Reply
jo
Lakshmi
pls I don't really know teach me
Joel
geometric isomerism are molecules that are locked into their spatial position with respect to one another due to a double Bond or ring structure
Chidera
Chromatography is a physical method of seperation where by mixtures that are in two phrases are separated
Lexzzy Reply

### Read also:

#### Get the best Chemistry course in your pocket!

Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications? By By By Qqq Qqq  By   By Anindyo Mukhopadhyay    