<< Chapter < Page Chapter >> Page >

Nuclear fuels

Nuclear fuel consists of a fissionable isotope, such as uranium-235, which must be present in sufficient quantity to provide a self-sustaining chain reaction. In the United States, uranium ores contain from 0.05–0.3% of the uranium oxide U 3 O 8 ; the uranium in the ore is about 99.3% nonfissionable U-238 with only 0.7% fissionable U-235. Nuclear reactors require a fuel with a higher concentration of U-235 than is found in nature; it is normally enriched to have about 5% of uranium mass as U-235. At this concentration, it is not possible to achieve the supercritical mass necessary for a nuclear explosion. Uranium can be enriched by gaseous diffusion (the only method currently used in the US), using a gas centrifuge, or by laser separation.

In the gaseous diffusion enrichment plant where U-235 fuel is prepared, UF 6 (uranium hexafluoride) gas at low pressure moves through barriers that have holes just barely large enough for UF 6 to pass through. The slightly lighter 235 UF 6 molecules diffuse through the barrier slightly faster than the heavier 238 UF 6 molecules. This process is repeated through hundreds of barriers, gradually increasing the concentration of 235 UF 6 to the level needed by the nuclear reactor. The basis for this process, Graham’s law, is described in the chapter on gases. The enriched UF 6 gas is collected, cooled until it solidifies, and then taken to a fabrication facility where it is made into fuel assemblies. Each fuel assembly consists of fuel rods that contain many thimble-sized, ceramic-encased, enriched uranium (usually UO 2 ) fuel pellets. Modern nuclear reactors may contain as many as 10 million fuel pellets. The amount of energy in each of these pellets is equal to that in almost a ton of coal or 150 gallons of oil.

Nuclear moderators

Neutrons produced by nuclear reactions move too fast to cause fission (refer back to [link] ). They must first be slowed to be absorbed by the fuel and produce additional nuclear reactions. A nuclear moderator    is a substance that slows the neutrons to a speed that is low enough to cause fission. Early reactors used high-purity graphite as a moderator. Modern reactors in the US exclusively use heavy water ( 1 2 H 2 O ) or light water (ordinary H 2 O), whereas some reactors in other countries use other materials, such as carbon dioxide, beryllium, or graphite.

Reactor coolants

A nuclear reactor coolant    is used to carry the heat produced by the fission reaction to an external boiler and turbine, where it is transformed into electricity. Two overlapping coolant loops are often used; this counteracts the transfer of radioactivity from the reactor to the primary coolant loop. All nuclear power plants in the US use water as a coolant. Other coolants include molten sodium, lead, a lead-bismuth mixture, or molten salts.

Control rods

Nuclear reactors use control rods ( [link] ) to control the fission rate of the nuclear fuel by adjusting the number of slow neutrons present to keep the rate of the chain reaction at a safe level. Control rods are made of boron, cadmium, hafnium, or other elements that are able to absorb neutrons. Boron-10, for example, absorbs neutrons by a reaction that produces lithium-7 and alpha particles:

Questions & Answers

How to know periodic table oftend
Ahmed Reply
how to get atomic number of an element
Ogunleye Reply
how do you solve the examples in a much more explanatory way
Ogunleye
The reaction of aceto nitrile with propane in the presence of the acid
Explain this paragraph in short
Manish Reply
What is solid state?
Manish Reply
What is chemical reaction
Manish
transforming reactants to product(s)
Andre
process
Andre
Example of Lewis acid
Chidera Reply
Example of Lewis acid
Chidera
Chlorine
Mikidad
Anything with an empty orbital... the hydrogen ion is the most common example. BH3 is the typical example, but any metal in a coordination complex can be considered a Lewis acid.
Eszter
okay thanks
Jovial
aluminium and sulphur react to give aluminium sulfide.How many grams of Al are required to produce 100g of aluminium sulphide
Soni Reply
aluminium and sulphur react to give aluminium sulphide how many grams of Al are required to produce 100g of aluminium sulphide?
Soni
aluminium and sulphur react to give aluminium sulphide how many grams of Al are required to produce 100g of aluminium sulphide?
Soni
2Al+3S=Al2S3
galina
m(Al)=100×27×2/150=36g
galina
150 comes from?
Soni
thank you very much
Soni
molar mass of Al2S3
galina
150.158
thiru
Why can't atom be created or destroyed
Jacaranda Reply
matter simply converts to pure energy
explain how to distinguish ethanol from a sample of ethanoic acid by chemical test
Alice Reply
explain how ethanol can be distinguished from ethanoic acid by chemical test
Alice
Using a suitable experiment, describe how diffusion occurs in gases.
Melody Reply
what is electrolytes?
charity Reply
substance which splits into ions during melting or dissolving
galina
on passing electric current though electrode
Kv
what is a radical
Jacob Reply
State that use law of partial pressure in a gas jar containing a gas and water what is the total pressure composed of 272cm^3 of carbon (iv) oxide were collected over water at15°c and 782mmHg pressure. calculate the volume of the dry gas at stp(SVP of water at 15°c is 12mmHg)
Aminat Reply
was Dalton's second postulate"atoms of the same kind have have similar/same mass and size" Or " the one mentioned in B here?
Maureen Reply
what was name of the Greek philosophers
Duku Reply

Get the best Chemistry course in your pocket!





Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask