<< Chapter < Page Chapter >> Page >
This figure shows large brown spheres arranged in a cube.
Copper is a metallic solid.

Covalent network solid

Covalent network solids include crystals of diamond, silicon, some other nonmetals, and some covalent compounds such as silicon dioxide (sand) and silicon carbide (carborundum, the abrasive on sandpaper). Many minerals have networks of covalent bonds. The atoms in these solids are held together by a network of covalent bonds, as shown in [link] . To break or to melt a covalent network solid, covalent bonds must be broken. Because covalent bonds are relatively strong, covalent network solids are typically characterized by hardness, strength, and high melting points. For example, diamond is one of the hardest substances known and melts above 3500 °C.

Four pairs of images are shown. In the first pair, a square box containing a black atom bonded to four other black atoms is shown above a structure composed of many black atoms, each bonded to four other black atoms, where one of the upper atoms is labeled “carbon” and the whole structure is labeled “diamond.” In the second pair, a square box containing a white atom bonded to four red atoms is shown above a structure composed of many white atoms, each bonded to four red atoms, where one of the red atoms is labeled “oxygen” and one of the white atoms is labeled “silicon.” The whole structure is labeled “silicon dioxide.” In the third pair, a square box containing a blue atom bonded to four white atoms is shown above a structure composed of many blue atoms, each bonded to four white atoms, where one of the blue atoms is labeled “carbon” and one of the white atoms is labeled “silicon.” The whole structure is labeled “silicon carbide.” In the fourth pair, a square box containing six black atoms bonded into a ring is shown above a structure composed of many rings, arranged into sheets layered one atop the other, where one of the black atoms is labeled “carbon.” The whole structure is labeled “graphite.”
A covalent crystal contains a three-dimensional network of covalent bonds, as illustrated by the structures of diamond, silicon dioxide, silicon carbide, and graphite. Graphite is an exceptional example, composed of planar sheets of covalent crystals that are held together in layers by noncovalent forces. Unlike typical covalent solids, graphite is very soft and electrically conductive.

Molecular solid

Molecular solids , such as ice, sucrose (table sugar), and iodine, as shown in [link] , are composed of neutral molecules. The strengths of the attractive forces between the units present in different crystals vary widely, as indicated by the melting points of the crystals. Small symmetrical molecules (nonpolar molecules), such as H 2 , N 2 , O 2 , and F 2 , have weak attractive forces and form molecular solids with very low melting points (below −200 °C). Substances consisting of larger, nonpolar molecules have larger attractive forces and melt at higher temperatures. Molecular solids composed of molecules with permanent dipole moments (polar molecules) melt at still higher temperatures. Examples include ice (melting point, 0 °C) and table sugar (melting point, 185 °C).

Two images are shown and labeled “carbon dioxide” and “iodine.” The carbon dioxide structure is composed of molecules, each made up of one gray and two red atoms, stacked together into a cube. The image of iodine shows pairs of purple atoms arranged near one another, but not touching.
Carbon dioxide (CO 2 ) consists of small, nonpolar molecules and forms a molecular solid with a melting point of −78 °C. Iodine (I 2 ) consists of larger, nonpolar molecules and forms a molecular solid that melts at 114 °C.

Properties of solids

A crystalline solid, like those listed in [link] , has a precise melting temperature because each atom or molecule of the same type is held in place with the same forces or energy. Thus, the attractions between the units that make up the crystal all have the same strength and all require the same amount of energy to be broken. The gradual softening of an amorphous material differs dramatically from the distinct melting of a crystalline solid. This results from the structural nonequivalence of the molecules in the amorphous solid. Some forces are weaker than others, and when an amorphous material is heated, the weakest intermolecular attractions break first. As the temperature is increased further, the stronger attractions are broken. Thus amorphous materials soften over a range of temperatures.

Types of Crystalline Solids and Their Properties
Type of Solid Type of Particles Type of Attractions Properties Examples
ionic ions ionic bonds hard, brittle, conducts electricity as a liquid but not as a solid, high to very high melting points NaCl, Al 2 O 3
metallic atoms of electropositive elements metallic bonds shiny, malleable, ductile, conducts heat and electricity well, variable hardness and melting temperature Cu, Fe, Ti, Pb, U
covalent network atoms of electronegative elements covalent bonds very hard, not conductive, very high melting points C (diamond), SiO 2 , SiC
molecular molecules (or atoms) IMFs variable hardness, variable brittleness, not conductive, low melting points H 2 O, CO 2 , I 2 , C 12 H 22 O 11

Questions & Answers

What is stoichometry
ngwuebo Reply
what is atom
yinka Reply
An indivisible part of an element
the smallest particle of an element which is indivisible is called an atom
An atom is the smallest indivisible particle of an element that can take part in chemical reaction
is carbonates soluble
Ebuka Reply
what is the difference between light and electricity
Joshua Reply
What is atom? atom can be defined as the smallest particles
what is the difference between Anode and nodes?
What's the net equations for the three steps of dissociation of phosphoric acid?
Lisa Reply
what is chemistry
Prince Reply
the study of matter
what did the first law of thermodynamics say
Starr Reply
energy can neither be created or distroyed it can only be transferred or converted from one form to another
Graham's law of Diffusion
Ayo Reply
what is melting vaporization
Anieke Reply
melting and boiling point explain in term of molecular motion and Brownian movement
Scientific notation for 150.9433962
Steve Reply
what is aromaticity
Usman Reply
aromaticity is a conjugated pi system specific to organic rings like benzene, which have an odd number of electron pairs within the system that allows for exceptional molecular stability
what is caustic soda
Ogbonna Reply
sodium hydroxide (NaOH)
what is distilled water
is simply means a condensed water vapour
advantage and disadvantage of water to human and industry
Abdulrahman Reply
a hydrocarbon contains 7.7 percent by mass of hydrogen and 92.3 percent by mass of carbon
Timothy Reply
how many types of covalent r there
JArim Reply
how many covalent bond r there
they are three 3
TYPES OF COVALENT BOND-POLAR BOND-NON POLAR BOND-DOUBLE BOND-TRIPPLE BOND. There are three types of covalent bond depending upon the number of shared electron pairs. A covalent bond formed by the mutual sharing of one electron pair between two atoms is called a "Single Covalent bond.
Practice Key Terms 8

Get the best Chemistry course in your pocket!

Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?