# 6.2 The bohr model  (Page 5/9)

 Page 5 / 9

## Key equations

• ${E}_{n}=-\frac{k{Z}^{2}}{{n}^{2}}\phantom{\rule{0.2em}{0ex}},\phantom{\rule{0.2em}{0ex}}n=1,\phantom{\rule{0.2em}{0ex}}2,\phantom{\rule{0.2em}{0ex}}3,\phantom{\rule{0.2em}{0ex}}\dots$
• $\text{Δ}E=k{Z}^{2}\left(\phantom{\rule{0.2em}{0ex}}\frac{1}{{n}_{1}^{2}}\phantom{\rule{0.2em}{0ex}}-\phantom{\rule{0.2em}{0ex}}\frac{1}{{n}_{2}^{2}}\phantom{\rule{0.2em}{0ex}}\right)$
• $r=\phantom{\rule{0.2em}{0ex}}\frac{{n}^{2}}{Z}\phantom{\rule{0.2em}{0ex}}{a}_{0}$

## Chemistry end of chapter exercises

Why is the electron in a Bohr hydrogen atom bound less tightly when it has a quantum number of 3 than when it has a quantum number of 1?

What does it mean to say that the energy of the electrons in an atom is quantized?

Quantized energy means that the electrons can possess only certain discrete energy values; values between those quantized values are not permitted.

Using the Bohr model, determine the energy, in joules, necessary to ionize a ground-state hydrogen atom. Show your calculations.

The electron volt (eV) is a convenient unit of energy for expressing atomic-scale energies. It is the amount of energy that an electron gains when subjected to a potential of 1 volt; 1 eV = 1.602 $×$ 10 –19 J. Using the Bohr model, determine the energy, in electron volts, of the photon produced when an electron in a hydrogen atom moves from the orbit with n = 5 to the orbit with n = 2. Show your calculations.

$\begin{array}{ll}E\hfill & =\phantom{\rule{0.2em}{0ex}}{E}_{2}\phantom{\rule{0.2em}{0ex}}-\phantom{\rule{0.2em}{0ex}}{E}_{5}\phantom{\rule{0.2em}{0ex}}=\phantom{\rule{0.2em}{0ex}}2.179\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-18}\left(\frac{1}{{n}_{2}^{2}}\phantom{\rule{0.2em}{0ex}}-\phantom{\rule{0.2em}{0ex}}\frac{1}{{n}_{5}^{2}}\right)\phantom{\rule{0.2em}{0ex}}\text{J}\hfill \\ \hfill & =\phantom{\rule{0.2em}{0ex}}2.179\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-18}\left(\frac{1}{{2}^{2}}\phantom{\rule{0.2em}{0ex}}-\phantom{\rule{0.2em}{0ex}}\frac{1}{{5}^{2}}\right)\phantom{\rule{0.2em}{0ex}}=\phantom{\rule{0.2em}{0ex}}4.576\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-19}\phantom{\rule{0.2em}{0ex}}\text{J}\hfill \\ \hfill & =\phantom{\rule{0.2em}{0ex}}\frac{4.576\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-19}\phantom{\rule{0.2em}{0ex}}\overline{)\text{J}}}{1.602\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-19}\phantom{\rule{0.2em}{0ex}}\overline{)\text{J}}\phantom{\rule{0.2em}{0ex}}{\text{eV}}^{-1}}\phantom{\rule{0.2em}{0ex}}=\phantom{\rule{0.2em}{0ex}}2.856\phantom{\rule{0.2em}{0ex}}\text{eV}\hfill \end{array}$

Using the Bohr model, determine the lowest possible energy, in joules, for the electron in the Li 2+ ion.

Using the Bohr model, determine the lowest possible energy for the electron in the He + ion.

−8.716 $×$ 10 −18 J

Using the Bohr model, determine the energy of an electron with n = 6 in a hydrogen atom.

Using the Bohr model, determine the energy of an electron with n = 8 in a hydrogen atom.

−3.405 $×$ 10 −20 J

How far from the nucleus in angstroms (1 angstrom = 1 $\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}$ 10 –10 m) is the electron in a hydrogen atom if it has an energy of –8.72 $\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}$ 10 –20 J?

What is the radius, in angstroms, of the orbital of an electron with n = 8 in a hydrogen atom?

33.9 Å

Using the Bohr model, determine the energy in joules of the photon produced when an electron in a He + ion moves from the orbit with n = 5 to the orbit with n = 2.

Using the Bohr model, determine the energy in joules of the photon produced when an electron in a Li 2+ ion moves from the orbit with n = 2 to the orbit with n = 1.

1.471 $×$ 10 −17 J

Consider a large number of hydrogen atoms with electrons randomly distributed in the n = 1, 2, 3, and 4 orbits.

(a) How many different wavelengths of light are emitted by these atoms as the electrons fall into lower-energy orbitals?

(b) Calculate the lowest and highest energies of light produced by the transitions described in part (a).

(c) Calculate the frequencies and wavelengths of the light produced by the transitions described in part (b).

How are the Bohr model and the Rutherford model of the atom similar? How are they different?

Both involve a relatively heavy nucleus with electrons moving around it, although strictly speaking, the Bohr model works only for one-electron atoms or ions. According to classical mechanics, the Rutherford model predicts a miniature “solar system” with electrons moving about the nucleus in circular or elliptical orbits that are confined to planes. If the requirements of classical electromagnetic theory that electrons in such orbits would emit electromagnetic radiation are ignored, such atoms would be stable, having constant energy and angular momentum, but would not emit any visible light (contrary to observation). If classical electromagnetic theory is applied, then the Rutherford atom would emit electromagnetic radiation of continually increasing frequency (contrary to the observed discrete spectra), thereby losing energy until the atom collapsed in an absurdly short time (contrary to the observed long-term stability of atoms). The Bohr model retains the classical mechanics view of circular orbits confined to planes having constant energy and angular momentum, but restricts these to quantized values dependent on a single quantum number, n . The orbiting electron in Bohr’s model is assumed not to emit any electromagnetic radiation while moving about the nucleus in its stationary orbits, but the atom can emit or absorb electromagnetic radiation when the electron changes from one orbit to another. Because of the quantized orbits, such “quantum jumps” will produce discrete spectra, in agreement with observations.

The spectra of hydrogen and of calcium are shown in [link] . What causes the lines in these spectra? Why are the colors of the lines different? Suggest a reason for the observation that the spectrum of calcium is more complicated than the spectrum of hydrogen.

what is electricity
electricity refers to the flow electrons
John
Hi. please can you tell me more on chemical equation
When 1 or 2 chemicals react, they rearrange their atomic composition forming new compounds. The total mass before and after is the same/ constant. Chemical equations of same reactants react in same ratios e.g. 1 Na ion reacts with 1 water molecule or a multipier like 1 mole of Na ions react with 1
Abdelkarim
Mole of water molecules. In that example we multipied by 6.02*10^23 or avogadro constant (L). Or 2 Na+ ions with two water molecules. The arrow means '' to form '' Some times conditions or reactants are written above the arrow like H+ or enzyme or temper, sometimes physical states are written
Abdelkarim
Beside the chemical Aqueous (aq) which means solute dissolved on water. Solid (s) etc Some chemical equations are written next to it ΔH= # which means enthalpy change which describes if the reaction is endothermic (+) or exothermic (-).
Abdelkarim
Some are reversible and have half double arrow sign.
Abdelkarim
what is the meaning of atoma
what is theory
what is chemical compound
Lorrita
A compound is the result of chemical bonding between 2 or more different elements.
Abdelkarim
difference between Amine and amide
what is the difference between alkanal and alkanone
difference between alkanol and alkanal
Michael
whaatt
Saturday
you are not well at all
Ibrahim
is organic compounds used for drying agent
Sulfuric acid is used as a drying agent.
Abdelkarim
what is an atom
An atom is the smallest part of an element, for instance gold atoms are the smallest part of gold that can enter a reaction. An atom must consist protons and electrons of equal number. You can think of those subatomic particles as spheres, but not orbiting randomly they move in specific way in
Abdelkarim
That was partially described mathematically. As a muslim, we believe that god created all matter from nothing. He is the Able, and only who can create matter in the begging in the big bang that was described in the Quran in chapter 17 verse 30, 1400 years ago, you can read it from internet.
Abdelkarim
what is electron affinity
John
do you have a private jet
Ibrahim
what is acid
Proton donor (H+). Like in lemons, oranges and some medicines.
Abdelkarim
what is titration? and how can i get my readings?
what is electrolysis?
what is the formula you use when calculating for gas law?
favor
PV=nrt
Farid
electro-means electricity while lysis-means splitting up so electrolysis simply means splitting up by means of electric current
John
good day. how may I see previous question asked in this chat, please?
Asha
Asha, A person named Favor asked what is meant by the term electrolysis
John
what is a sample
According to google, a speciemen taken for specific testing or analysis.
Abdelkarim
how would you carry out a qualitative analysis for two samples of salt suspected to contain chloride ion, bromide ion,iodide ion and carbonate ion
You can search google for test for these ions or test for anions ingeneral which will help you as it contauns videos too.
Abdelkarim
what is acid
Olubodun
why don't you just search for what is acid
Ibrahim
This is a question you're being tested Abdelkarim stop being rude
John
an element x with electronic configurations as 2s²,2p²,3p6,combines with another element y with electronic configuration as 1s², 2p²,3p²,3p5,derive the chemical formula of the compound
These electrongic configuration are entered wrong, any way, you can use an app called peridoic table 2021 that has advabced electric configuration in your studying. Use it to learn about patterns easier. And use it to solve problem: identify elements, then figure out bonding and ration for example:
Abdelkarim
The elemtents are H and S Then the formula is H2S.
Abdelkarim
an element x with electronic configurations as 2s²,2p²,3p6,combines with another element y with electronic configuration as 1s², 2p²,3p²,3p5,derive the chemical formula of the compound
what is atomic number
Dorcas
It is the number of protons in the nucleus of an atom, which is unique for each element e.g only gold atoms have 79 protons in their nucleus.
Abdelkarim
hmm
favor
the number present in proton in nucleus of an atom
favor