<< Chapter < Page Chapter >> Page >

Calculation of changes in concentration

If we know the equilibrium constant for a reaction and a set of concentrations of reactants and products that are not at equilibrium , we can calculate the changes in concentrations as the system comes to equilibrium, as well as the new concentrations at equilibrium. The typical procedure can be summarized in four steps.

  1. Determine the direction the reaction proceeds to come to equilibrium.
    1. Write a balanced chemical equation for the reaction.
    2. If the direction in which the reaction must proceed to reach equilibrium is not obvious, calculate Q c from the initial concentrations and compare to K c to determine the direction of change.
  2. Determine the relative changes needed to reach equilibrium, then write the equilibrium concentrations in terms of these changes.
    1. Define the changes in the initial concentrations that are needed for the reaction to reach equilibrium. Generally, we represent the smallest change with the symbol x and express the other changes in terms of the smallest change.
    2. Define missing equilibrium concentrations in terms of the initial concentrations and the changes in concentration determined in (a).
  3. Solve for the change and the equilibrium concentrations.
    1. Substitute the equilibrium concentrations into the expression for the equilibrium constant, solve for x , and check any assumptions used to find x .
    2. Calculate the equilibrium concentrations.
  4. Check the arithmetic.
    1. Check the calculated equilibrium concentrations by substituting them into the equilibrium expression and determining whether they give the equilibrium constant.
      Sometimes a particular step may differ from problem to problem—it may be more complex in some problems and less complex in others. However, every calculation of equilibrium concentrations from a set of initial concentrations will involve these steps.
      In solving equilibrium problems that involve changes in concentration, sometimes it is convenient to set up an ICE table, as described in the previous section.

Calculation of concentration changes as a reaction goes to equilibrium

Under certain conditions, the equilibrium constant for the decomposition of PCl 5 ( g ) into PCl 3 ( g ) and Cl 2 ( g ) is 0.0211. What are the equilibrium concentrations of PCl 5 , PCl 3 , and Cl 2 if the initial concentration of PCl 5 was 1.00 M ?


Use the stepwise process described earlier.

  1. Determine the direction the reaction proceeds.

    The balanced equation for the decomposition of PCl 5 is

    PCl 5 ( g ) PCl 3 ( g ) + Cl 2 ( g )

    Because we have no products initially, Q c = 0 and the reaction will proceed to the right.

  2. Determine the relative changes needed to reach equilibrium, then write the equilibrium concentrations in terms of these changes.

    Let us represent the increase in concentration of PCl 3 by the symbol x . The other changes may be written in terms of x by considering the coefficients in the chemical equation.

    PCl 5 ( g ) PCl 3 ( g ) + Cl 2 ( g ) x x x

    The changes in concentration and the expressions for the equilibrium concentrations are:

    This table has two main columns and four rows. The first row for the first column does not have a heading and then has the following in the first column: Initial concentration ( M ), Change ( M ), Equilibrium concentration ( M ). The second column has the header, “P C l subscript 5 equilibrium arrow P C l subscript 3 plus C l subscript 2.” Under the second column is a subgroup of three rows and three columns. The first column has the following: 1.00, negative x, 1.00 minus x. The second column has the following: 0, positive x, 0 plus x equals x. The third column has the following: 0, positive x, 0 plus x equals x.
  3. Solve for the change and the equilibrium concentrations.

    Substituting the equilibrium concentrations into the equilibrium constant equation gives

    K c = [ PCl 3 ] [ Cl 2 ] [ PCl 5 ] = 0.0211
    = ( x ) ( x ) ( 1.00 x )

    This equation contains only one variable, x , the change in concentration. We can write the equation as a quadratic equation and solve for x using the quadratic formula.

    0.0211 = ( x ) ( x ) ( 1.00 x )
    0.0211 ( 1.00 x ) = x 2
    x 2 + 0.0211 x 0.0211 = 0

    Appendix B shows us an equation of the form ax 2 + bx + c = 0 can be rearranged to solve for x :

    x = b ± b 2 4 a c 2 a

    In this case, a = 1, b = 0.0211, and c = −0.0211. Substituting the appropriate values for a , b , and c yields:

    x = 0.0211 ± ( 0.0211 ) 2 4 ( 1 ) ( −0.0211 ) 2 ( 1 )
    = 0.0211 ± ( 4.45 × 10 −4 ) + ( 8.44 × 10 −2 ) 2
    = 0.0211 ± 0.291 2


    x = 0.0211 + 0.291 2 = 0.135


    x = 0.0211 0.291 2 = −0.156

    Quadratic equations often have two different solutions, one that is physically possible and one that is physically impossible (an extraneous root). In this case, the second solution (−0.156) is physically impossible because we know the change must be a positive number (otherwise we would end up with negative values for concentrations of the products). Thus, x = 0.135 M .

    The equilibrium concentrations are

    [ PCl 5 ] = 1.00 0.135 = 0.87 M
    [ PCl 3 ] = x = 0.135 M
    [ Cl 2 ] = x = 0.135 M
  4. Check the arithmetic.

    Substitution into the expression for K c (to check the calculation) gives

    K c = [ PCl 3 ] [ Cl 2 ] [ PCl 5 ] = ( 0.135 ) ( 0.135 ) 0.87 = 0.021

    The equilibrium constant calculated from the equilibrium concentrations is equal to the value of K c given in the problem (when rounded to the proper number of significant figures). Thus, the calculated equilibrium concentrations check.

Questions & Answers

what is the basicity of an atom
Eze Reply
how to solve oxidation number
Mr Reply
good evening sir
mention some examples of ester
Chinenye Reply
do you mean ether?
what do converging lines on a mass Spectra represent
Rozzi Reply
would I do to help me know this topic ?
what the physic?
Bassidi Reply
who is albert heistein?
similarities between elements in the same group and period
legend Reply
what is the ratio of hydrogen to oxulygen in carbohydrates
Nadeen Reply
what is poh and ph
Amarachi Reply
please what is the chemical configuration of sodium
2, 6, 2, 1
1s2, 2s2, 2px2, 2py2, 2pz2, 3s1
what is criteria purity
Austin Reply
cathode is a negative ion why is it that u said is negative
Michael Reply
cathode is a negative electrode while cation is a positive ion. cation move towards cathode plate.
CH3COOH +NaOH ,complete the equation
david Reply
compare and contrast the electrical conductivity of HCl and CH3cooH
Sa Reply
The must be in dissolved in water (aqueous). Electrical conductivity is measured in Siemens (s). HCl (aq) has higher conductivity, as it fully ionises (small portion of CH3COOH (aq) ionises) when dissolved in water. Thus, more free ions to carry charge.
HCl being an strong acid will fully ionize in water thus producing more mobile ions for electrical conduction than the carboxylic acid
differiante between a weak and a strong acid
how can I tell when an acid is weak or Strong
an aqueous solution of copper sulphate was electrolysed between graphite electrodes. state what was observed at the cathode
Bakanya Reply
write the equation for the reaction that took place at the anode
what is enthalpy of combustion
Enthalpy change of combustion: It is the enthalpy change when 1 mole of substance is combusted with excess oxygen under standard conditions. Elements are in their standard states. Conditions: pressure = 1 atm Temperature =25°C
Observation at Cathode: Cu metal deposit (pink/red solid).
Equation at Anode: (SO4)^2- + 4H^+ + 2e^- __> SO2 + 2H2O
Equation : CuSO4 -> Cu^2+ + SO4^2- equation at katode: 2Cu^2+ + 4e -> 2Cu equation at anode: 2H2O -> 4H+ + O2 +4e at the anode which reacts is water because SO4 ^ 2- cannot be electrolyzed in the anode
what is the electrolysis of sulphuric acid
Bakanya Reply
why is electrolysis difficult using solid lead chloride
what is heat formation
Biefon Reply

Get the best Chemistry course in your pocket!

Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?