<< Chapter < Page
  Chemistry   Page 1 / 1
Chapter >> Page >
  • Occurrence, Preparation, and Properties of Transition Metals and their Compounds
  • Coordination Chemistry of Transition Metals
  • Spectroscopic and Magnetic Properties of Coordination Compounds
This figure contains three photos. The first is of a jade green mineral chunk with a darkened regions and a matte surface. The second is of a crystalline mineral chunk composed primarily of bright royal blue shiny crystals and some lighter blue crystalline regions. The third is of long red crystals.
Transition metals often form vibrantly colored complexes. The minerals malachite (green), azurite (blue), and proustite (red) are some examples. (credit left: modification of work by James St. John; credit middle: modification of work by Stephanie Clifford; credit right: modification of work by Terry Wallace)

We have daily contact with many transition metals. Iron occurs everywhere—from the rings in your spiral notebook and the cutlery in your kitchen to automobiles, ships, buildings, and in the hemoglobin in your blood. Titanium is useful in the manufacture of lightweight, durable products such as bicycle frames, artificial hips, and jewelry. Chromium is useful as a protective plating on plumbing fixtures and automotive detailing.

In addition to being used in their pure elemental forms, many compounds containing transition metals have numerous other applications. Silver nitrate is used to create mirrors, zirconium silicate provides friction in automotive brakes, and many important cancer-fighting agents, like the drug cisplatin and related species, are platinum compounds.

The variety of properties exhibited by transition metals is due to their complex valence shells. Unlike most main group metals where one oxidation state is normally observed, the valence shell structure of transition metals means that they usually occur in several different stable oxidation states. In addition, electron transitions in these elements can correspond with absorption of photons in the visible electromagnetic spectrum, leading to colored compounds. Because of these behaviors, transition metals exhibit a rich and fascinating chemistry.

Questions & Answers

what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
what is chemistry
Imoh Reply
what is chemistry
Damilola

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask