<< Chapter < Page Chapter >> Page >

Electron configurations and the periodic table

As described earlier, the periodic table arranges atoms based on increasing atomic number so that elements with the same chemical properties recur periodically. When their electron configurations are added to the table ( [link] ), we also see a periodic recurrence of similar electron configurations in the outer shells of these elements. Because they are in the outer shells of an atom, valence electrons play the most important role in chemical reactions. The outer electrons have the highest energy of the electrons in an atom and are more easily lost or shared than the core electrons. Valence electrons are also the determining factor in some physical properties of the elements.

Elements in any one group (or column) have the same number of valence electrons; the alkali metals lithium and sodium each have only one valence electron, the alkaline earth metals beryllium and magnesium each have two, and the halogens fluorine and chlorine each have seven valence electrons. The similarity in chemical properties among elements of the same group occurs because they have the same number of valence electrons. It is the loss, gain, or sharing of valence electrons that defines how elements react.

It is important to remember that the periodic table was developed on the basis of the chemical behavior of the elements, well before any idea of their atomic structure was available. Now we can understand why the periodic table has the arrangement it has—the arrangement puts elements whose atoms have the same number of valence electrons in the same group. This arrangement is emphasized in [link] , which shows in periodic-table form the electron configuration of the last subshell to be filled by the Aufbau principle. The colored sections of [link] show the three categories of elements classified by the orbitals being filled: main group, transition, and inner transition elements. These classifications determine which orbitals are counted in the valence shell    , or highest energy level orbitals of an atom.

  1. Main group elements (sometimes called representative elements ) are those in which the last electron added enters an s or a p orbital in the outermost shell, shown in blue and red in [link] . This category includes all the nonmetallic elements, as well as many metals and the intermediate semimetallic elements. The valence electrons for main group elements are those with the highest n level. For example, gallium (Ga, atomic number 31) has the electron configuration [Ar] 4 s 2 3 d 10 4 p 1 , which contains three valence electrons (underlined). The completely filled d orbitals count as core, not valence, electrons.
  2. Transition elements or transition metals . These are metallic elements in which the last electron added enters a d orbital. The valence electrons (those added after the last noble gas configuration) in these elements include the ns and ( n – 1) d electrons. The official IUPAC definition of transition elements specifies those with partially filled d orbitals. Thus, the elements with completely filled orbitals (Zn, Cd, Hg, as well as Cu, Ag, and Au in [link] ) are not technically transition elements. However, the term is frequently used to refer to the entire d block (colored yellow in [link] ), and we will adopt this usage in this textbook.
  3. Inner transition elements are metallic elements in which the last electron added occupies an f orbital. They are shown in green in [link] . The valence shells of the inner transition elements consist of the ( n – 2) f, the ( n – 1) d , and the ns subshells. There are two inner transition series:
    1. The lanthanide series: lanthanide (La) through lutetium (Lu)
    2. The actinide series: actinide (Ac) through lawrencium (Lr)

Questions & Answers

what are oxidation numbers
Idowu Reply
pls what is electrolysis
Idowu Reply
what is the basicity of an atom
Eze Reply
basicity is the number of replaceable Hydrogen atoms in a Molecule. in H2SO4, the basicity is 2. in Hcl, the basicity is 1
Inemesit
how to solve oxidation number
Mr Reply
good evening sir
Lade
mention some examples of ester
Chinenye Reply
do you mean ether?
Megan
what do converging lines on a mass Spectra represent
Rozzi Reply
would I do to help me know this topic ?
Bulus
oi
Amargo
what the physic?
Bassidi Reply
who is albert heistein?
Bassidi
similarities between elements in the same group and period
legend Reply
what is the ratio of hydrogen to oxulygen in carbohydrates
Nadeen Reply
bunubyyvyhinuvgtvbjnjnygtcrc
Nadeen
yvcrzezalakhhehuzhbshsunakakoaak
Nadeen
what is poh and ph
Amarachi Reply
please what is the chemical configuration of sodium
Sharon
2.8.1
david
1s²2s²2p⁶3s¹
Haile
2, 6, 2, 1
Salman
1s2, 2s2, 2px2, 2py2, 2pz2, 3s1
Justice
1s2,2s2,2py2,2
Maryify
1s2,2s2,2p6,
Francis
1s2,2s2,2px2,2py2,2pz2,3s1
Nnyila
what is criteria purity
Austin Reply
cathode is a negative ion why is it that u said is negative
Michael Reply
cathode is a negative electrode while cation is a positive ion. cation move towards cathode plate.
king
CH3COOH +NaOH ,complete the equation
david Reply
compare and contrast the electrical conductivity of HCl and CH3cooH
Sa Reply
The must be in dissolved in water (aqueous). Electrical conductivity is measured in Siemens (s). HCl (aq) has higher conductivity, as it fully ionises (small portion of CH3COOH (aq) ionises) when dissolved in water. Thus, more free ions to carry charge.
Abdelkarim
HCl being an strong acid will fully ionize in water thus producing more mobile ions for electrical conduction than the carboxylic acid
Valentine
differiante between a weak and a strong acid
david
how can I tell when an acid is weak or Strong
Amarachi
an aqueous solution of copper sulphate was electrolysed between graphite electrodes. state what was observed at the cathode
Bakanya Reply
write the equation for the reaction that took place at the anode
Bakanya
what is enthalpy of combustion
Bakanya
Enthalpy change of combustion: It is the enthalpy change when 1 mole of substance is combusted with excess oxygen under standard conditions. Elements are in their standard states. Conditions: pressure = 1 atm Temperature =25°C
Abdelkarim
Observation at Cathode: Cu metal deposit (pink/red solid).
Abdelkarim
Equation at Anode: (SO4)^2- + 4H^+ + 2e^- __> SO2 + 2H2O
Abdelkarim
Equation : CuSO4 -> Cu^2+ + SO4^2- equation at katode: 2Cu^2+ + 4e -> 2Cu equation at anode: 2H2O -> 4H+ + O2 +4e at the anode which reacts is water because SO4 ^ 2- cannot be electrolyzed in the anode
Niken
Practice Key Terms 7

Get the best Chemistry course in your pocket!





Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask