<< Chapter < Page Chapter >> Page >

Beginning with the transition metal scandium (atomic number 21), additional electrons are added successively to the 3 d subshell. This subshell is filled to its capacity with 10 electrons (remember that for l = 2 [ d orbitals], there are 2 l + 1 = 5 values of m l , meaning that there are five d orbitals that have a combined capacity of 10 electrons). The 4 p subshell fills next. Note that for three series of elements, scandium (Sc) through copper (Cu), yttrium (Y) through silver (Ag), and lutetium (Lu) through gold (Au), a total of 10 d electrons are successively added to the ( n – 1) shell next to the n shell to bring that ( n – 1) shell from 8 to 18 electrons. For two series, lanthanum (La) through lutetium (Lu) and actinium (Ac) through lawrencium (Lr), 14 f electrons ( l = 3, 2 l + 1 = 7 m l values; thus, seven orbitals with a combined capacity of 14 electrons) are successively added to the ( n – 2) shell to bring that shell from 18 electrons to a total of 32 electrons.

Quantum numbers and electron configurations

What is the electron configuration and orbital diagram for a phosphorus atom? What are the four quantum numbers for the last electron added?

Solution

The atomic number of phosphorus is 15. Thus, a phosphorus atom contains 15 electrons. The order of filling of the energy levels is 1 s , 2 s , 2 p , 3 s , 3 p , 4 s , . . . The 15 electrons of the phosphorus atom will fill up to the 3 p orbital, which will contain three electrons:

This figure provides the electron configuration 1 s superscript 2 2 s superscript 2 2 p superscript 6 3 s superscript 2 3 p superscript 3. It includes a diagram with two individual squares followed by 3 connected squares, a single square, and another connected group of 3 squares all in a single row. The first square is labeled below as, “1 s.” The second is similarly labeled, “2 s.” The first group of connected squares is labeled below as, “2 p.” The square that follows is labeled, “3 s,” and the final group of three squares is labeled, “3 p.” All squares except the last group of three squares has a pair of half arrows: one pointing up and the other down. Each of the squares in the last group of 3 contains a single upward pointing arrow.

The last electron added is a 3 p electron. Therefore, n = 3 and, for a p -type orbital, l = 1. The m l value could be –1, 0, or +1. The three p orbitals are degenerate, so any of these m l values is correct. For unpaired electrons, convention assigns the value of + 1 2 for the spin quantum number; thus, m s = + 1 2 .

Check your learning

Identify the atoms from the electron configurations given:

(a) [Ar]4 s 2 3 d 5

(b) [Kr]5 s 2 4 d 10 5 p 6

Answer:

(a) Mn (b) Xe

Got questions? Get instant answers now!

The periodic table can be a powerful tool in predicting the electron configuration of an element. However, we do find exceptions to the order of filling of orbitals that are shown in [link] or [link] . For instance, the electron configurations (shown in [link] ) of the transition metals chromium (Cr; atomic number 24) and copper (Cu; atomic number 29), among others, are not those we would expect. In general, such exceptions involve subshells with very similar energy, and small effects can lead to changes in the order of filling.

In the case of Cr and Cu, we find that half-filled and completely filled subshells apparently represent conditions of preferred stability. This stability is such that an electron shifts from the 4 s into the 3 d orbital to gain the extra stability of a half-filled 3 d subshell (in Cr) or a filled 3 d subshell (in Cu). Other exceptions also occur. For example, niobium (Nb, atomic number 41) is predicted to have the electron configuration [Kr]5 s 2 4 d 3 . Experimentally, we observe that its ground-state electron configuration is actually [Kr]5 s 1 4 d 4 . We can rationalize this observation by saying that the electron–electron repulsions experienced by pairing the electrons in the 5 s orbital are larger than the gap in energy between the 5 s and 4 d orbitals. There is no simple method to predict the exceptions for atoms where the magnitude of the repulsions between electrons is greater than the small differences in energy between subshells.

Questions & Answers

what is chemistry
Daniel Reply
chemistry is the branch of science which deal with the composition of matter
SHEDRACK
discuss the orbital stracture of the following methane,ethane,ethylene,acetylene
khadija Reply
Why phosphurs in solid state have one atom but in gas state have four atoms
Shehab Reply
Are nuclear reactions both exothermic reactions and endothermic reactions or what?
Blessed Reply
to what volume must 8.32 NaOH be diluted to its analytical concentration 0.20 M
Sheriza Reply
weight in mg 1.76 mole of I
Sheriza
the types of hydrocarbons
Ohanaka Reply
u are mad go and open textbook
Emmanuel
hahahahahahahahahahahahaha
Jessica
aliphatic and aromatic hydrocarbons
Osakue
stupid boy Emmanuel
Ohanaka
I don't use to see the messages
Adazion Reply
how can you determine the electronegativity of a compound or in molecules
Shalom Reply
when u move from left to right in a periodic table the negativity increases
reeza
Are you trying to say that the elctronegativity increases down the group and decreases across the period?
Ohanaka
yes and also increases across the period
reeza
for instance when you look at one group of elements in a periodic table electronegativity decreases when you go across the table electronegativity increases. hydrogen is more electronegative than sodium, potassium of that group. oxygen is more electronegative than carbon.
reeza
i hope we all know that organic compounds have carbon as their back bone
Madueke
OK,Thank you so much for the answer. I am happy now
Adazion Reply
can I ask you a question now
Osakue
yes
hanna
what is the oxidation number of nitrogen, oxygen and sulphur
Osakue
5, -2 & -2
hanna
What is an atom?
Adazion Reply
is a smallest particle of a chemical element that can exist
Osakue
can I ask a question
Osakue
it is a substance that cannot be broken down into simpler units by any chemical reaction
Madueke
An atom is the smallest part of an element dat can take part in chemical reaction.
Idris
an atom is the smallest part of an element that can take part in a chemical reaction nd still retain it chemical properties
Precious
Is the smallest particles of an element that take part in chemical reaction without been change
John
what are the branches of an atomic mass
Adazion Reply
Still waiting for answers for a very long time now
Adazion
Please May una reply me ooo
Adazion
that question is very strong oooo
Osakue
most of the questions I asked wasn't answered what's the problem guys?
Adazion Reply
hi, there is no problems ooo
Osakue
between H2SO4 and HCL which is the strongest dehydrating agent ?
Ibirogba
HCl is the strongest dehydrating agent
Osakue
ᴡʜᴀᴛ ᴡɪʟʟ ᴏʙsᴇʀᴠᴇᴅ ɪғ ʟᴇᴀᴅ(ɪɪ)ɴɪᴛʀᴀᴛᴇs ɪs ᴀᴅᴅᴇᴅ ᴏɴ ᴛᴏ sᴏᴅɪᴜᴍ ɪᴏᴅɪᴅᴇ sᴏʟᴜᴛɪᴏɴ
Gawaar Reply
what is the functional group of alkanals
Frankyx Reply
can someone explain salt analysis properly
Frankyx
Find the number of calcium atoms present in a sample weighing 2.0*10 raise to the power of -3g
Mfoniso Reply
Practice Key Terms 7

Get the best Chemistry course in your pocket!





Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask