<< Chapter < Page Chapter >> Page >
This figure includes electron configurations and orbital diagrams for four elements, N, O, F, and N e. Each diagram consists of two individual squares followed by 3 connected squares in a single row. The first square is labeled below as, “1 s.” The second is similarly labeled, “2 s.” The connected squares are labeled below as, “2 p.” All squares not connected to each other contain a pair of half arrows: one pointing up and the other down. For the element N, the electron configuration is 1 s superscript 2 2 s superscript 2 2 p superscript 3. Each of the squares in the group of 3 contains a single upward pointing arrow for this element. For the element O, the electron configuration is 1 s superscript 2 2 s superscript 2 2 p superscript 4. The first square in the group of 3 contains a pair of arrows and the last two squares contain single upward pointing arrows. For the element F, the electron configuration is 1 s superscript 2 2 s superscript 2 2 p superscript 5. The first two squares in the group of 3 each contain a pair of arrows and the last square contains a single upward pointing arrow. For the element N e, the electron configuration is 1 s superscript 2 2 s superscript 2 2 p superscript 6. The squares in the group of 3 each contains a pair of arrows.

The alkali metal sodium (atomic number 11) has one more electron than the neon atom. This electron must go into the lowest-energy subshell available, the 3 s orbital, giving a 1 s 2 2 s 2 2 p 6 3 s 1 configuration. The electrons occupying the outermost shell orbital(s) (highest value of n ) are called valence electrons    , and those occupying the inner shell orbitals are called core electrons ( [link] ). Since the core electron shells correspond to noble gas electron configurations, we can abbreviate electron configurations by writing the noble gas that matches the core electron configuration, along with the valence electrons in a condensed format. For our sodium example, the symbol [Ne] represents core electrons, (1 s 2 2 s 2 2 p 6 ) and our abbreviated or condensed configuration is [Ne]3 s 1 .

This figure includes the element symbol N a, followed by the electron configuration for the element. The first part of the electron configuration, 1 s superscript 2 2 s superscript 2 2 p superscript 6, is shaded in purple and is labeled, “core electrons.” The last portion, 3 s superscript 1, is shaded orange and is labeled, “valence electron.” To the right of this configuration is the word “Abbreviation” followed by [ N e ] 3 s superscript 1.
A core-abbreviated electron configuration (right) replaces the core electrons with the noble gas symbol whose configuration matches the core electron configuration of the other element.

Similarly, the abbreviated configuration of lithium can be represented as [He]2 s 1 , where [He] represents the configuration of the helium atom, which is identical to that of the filled inner shell of lithium. Writing the configurations in this way emphasizes the similarity of the configurations of lithium and sodium. Both atoms, which are in the alkali metal family, have only one electron in a valence s subshell outside a filled set of inner shells.

Li: [ He ] 2 s 1 Na: [ Ne ] 3 s 1

The alkaline earth metal magnesium (atomic number 12), with its 12 electrons in a [Ne]3 s 2 configuration, is analogous to its family member beryllium, [He]2 s 2 . Both atoms have a filled s subshell outside their filled inner shells. Aluminum (atomic number 13), with 13 electrons and the electron configuration [Ne]3 s 2 3 p 1 , is analogous to its family member boron, [He]2 s 2 2 p 1 .

The electron configurations of silicon (14 electrons), phosphorus (15 electrons), sulfur (16 electrons), chlorine (17 electrons), and argon (18 electrons) are analogous in the electron configurations of their outer shells to their corresponding family members carbon, nitrogen, oxygen, fluorine, and neon, respectively, except that the principal quantum number of the outer shell of the heavier elements has increased by one to n = 3. [link] shows the lowest energy, or ground-state, electron configuration for these elements as well as that for atoms of each of the known elements.

A periodic table, entitled, “Electron Configuration Table” is shown. The table includes the outer electron configuration information, atomic numbers, and element symbols for all elements. A square for the element hydrogen is pulled out beneath the table to provide detail. The blue shaded square includes the atomic number in the upper left corner, which is 1, the element symbol, H in the upper right corner, and the outer electron configuration in the lower, central portion of the square. For H, this is 1 s superscript 1.
This version of the periodic table shows the outer-shell electron configuration of each element. Note that down each group, the configuration is often similar.

When we come to the next element in the periodic table, the alkali metal potassium (atomic number 19), we might expect that we would begin to add electrons to the 3 d subshell. However, all available chemical and physical evidence indicates that potassium is like lithium and sodium, and that the next electron is not added to the 3 d level but is, instead, added to the 4 s level ( [link] ). As discussed previously, the 3 d orbital with no radial nodes is higher in energy because it is less penetrating and more shielded from the nucleus than the 4 s , which has three radial nodes. Thus, potassium has an electron configuration of [Ar]4 s 1 . Hence, potassium corresponds to Li and Na in its valence shell configuration. The next electron is added to complete the 4 s subshell and calcium has an electron configuration of [Ar]4 s 2 . This gives calcium an outer-shell electron configuration corresponding to that of beryllium and magnesium.

Questions & Answers

wat are hydrocarbon s
Opio Reply
I think they are molecules that comprise only of hydrogen and carbon atoms ( they are organic if I'm not mistaken)
Mmathabo
am new here can I join
Yeko
yes u can
Benita
give two properties of liquid
Grace Reply
molecules are slightly packed and they follow the shape of a container.
Obedie
what is measurement
Isaiah Reply
is the comparison of an unknown quantity with a fixed quantity of the same kind
Sahada
How does an element differ from a compound? How are they similar?
Adeola Reply
an element is an indivisible particles that can take part in a reaction and consist of smaller or tiny particles i.e proton, neutrons and electron while a compound is when two or more element chemically combine together. They are similar when they are homogeneous compound. they take the same rxn.
Yusuf
an element is s chemically pure substance containing a particular type of atoms.. A COMPOUND is a substance containing atoms from different elements..
Inemesit
How to get the Lewis formula of SeCl+3
Erica Reply
hi,I'm new here can I join the conversation
EZEA
what is the structural formula for starch
EZEA Reply
Starch is a mixture (of chemicals) of amylose and amylopectin. Both are macromolecules and polymers. You can search on wikipedia.
Abdelkarim
what is the roles of filter bed
Fathmat
what is the roles of Alu m
Fathmat
what is the roles of chlorine
Fathmat
Roles can be classified or correlate it to different areas: For example: Chlorine can be used in reactions (in industry) to manufacture HCl, which then can be used for other things. Or in swimming pools to kill bacteria. Or as a component in compounds with pharmaceutical roles (drugs). For Al:
Abdelkarim
Its dentisty value is suitable to be used in alloys (mixture of metals) in aircraft bodies. Also, Aluminium foils, Tin cans,.. Some of them are also in Al overhead cables in streets and long roads.
Abdelkarim
what is chemistry
Maxamed
what is the meaning of exceedingly
Yushao Reply
it is an adverb which means extremely
Rohini
what is atomic chemistry?
Gladys Reply
Lewis structure for no3
Gladys
Lewis structure for no3
Gladys
Yes
Gillian
Lewis structure for no3
Nomvelo
what is weak acid
Muhammed Reply
It is an acid which partially ionises in water.
Abdelkarim
what is incandescence
Clifton
what makes it glow
Clifton
why is it red, irange and yellow in color
Clifton
hello am new here and I want to join you
Aliyu
hello
Clifton
hi
Aliyu
too
Gillian
hello i am new here please i want to join this group
Paul
Hi, I'm also new here
Salaudeen
Hi
Keeya
hello guys !!
Sourav
what is pressure?
Slark Reply
The force applied to suction Area of the body
Ahmed
Matter composed of exceedingly small paticle called atom.
Yushao
questions related to metals
Regina Reply
occurrence and preparation of the representatives metals
Regina
list the 20, periodic table and their symbols
Fathmat Reply
hydrogen:h helium;he lithium:l beryllium:be Boron:b Carbon;C Nitrogen:n Oxygen:O FLUORINE:f Neon:n Sodium:s Magnesium:mg Aluminum:a Silicon:s Phosphorus:p Sulphur:s Chlorine:c Argon;a Potassium:p Calcium:c
Benita
Hydrogen, helium, lithium, beryllium, boron, carbon, nitrogen, oxygen, fluorine, neon, sodium, magnesium, aluminium, silicon, phosphorus, sulphur, chlorine, argon, potassium, calcium
Cudjoe
Welcome
Gillian
there are 118 known elements ...you numbnuts
what is a solute
Ekezie Reply
Any substance that is disolved in a liqid solvent to create a solution
Fifa
sorry liquid
Fifa
it's a liquid substance
Fathmat
hello group
Ayomide
is the substance that dissolves in the solvent
Amos
so is HCl ionic compound
Honest Reply
No, covalent compound ➡️ molecule. As both H and Cl are non-metals and and form covalent bind by sharing valence e-. But can fully ionice in water forming H+ (a proton, a reason for acidity) and Cl- (anion =Chloride) Hydrogen Chloride is a gas at room; Hydrochloric acid = HCl (aq), dissolved in w
Abdelkarim
Form covalenr bond*
Abdelkarim
The question marks are an emoji in the first sentence is an unread emoji. HCl Covalent compund -> molecule
Abdelkarim
Hi.
Queen
Hi
Calvin
Yh
Cudjoe
yes
Amos
what is chemistry
Chukwu Reply
is the study of composition of substances and the way they behave under different conditions
Amos
how do calculate n1 though n6 any help on understanding the concept
Clifton
is the study of properties of matter and it's component
Grace
Practice Key Terms 7

Get the best Chemistry course in your pocket!





Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask