<< Chapter < Page Chapter >> Page >
This figure includes electron configurations and orbital diagrams for four elements, N, O, F, and N e. Each diagram consists of two individual squares followed by 3 connected squares in a single row. The first square is labeled below as, “1 s.” The second is similarly labeled, “2 s.” The connected squares are labeled below as, “2 p.” All squares not connected to each other contain a pair of half arrows: one pointing up and the other down. For the element N, the electron configuration is 1 s superscript 2 2 s superscript 2 2 p superscript 3. Each of the squares in the group of 3 contains a single upward pointing arrow for this element. For the element O, the electron configuration is 1 s superscript 2 2 s superscript 2 2 p superscript 4. The first square in the group of 3 contains a pair of arrows and the last two squares contain single upward pointing arrows. For the element F, the electron configuration is 1 s superscript 2 2 s superscript 2 2 p superscript 5. The first two squares in the group of 3 each contain a pair of arrows and the last square contains a single upward pointing arrow. For the element N e, the electron configuration is 1 s superscript 2 2 s superscript 2 2 p superscript 6. The squares in the group of 3 each contains a pair of arrows.

The alkali metal sodium (atomic number 11) has one more electron than the neon atom. This electron must go into the lowest-energy subshell available, the 3 s orbital, giving a 1 s 2 2 s 2 2 p 6 3 s 1 configuration. The electrons occupying the outermost shell orbital(s) (highest value of n ) are called valence electrons    , and those occupying the inner shell orbitals are called core electrons ( [link] ). Since the core electron shells correspond to noble gas electron configurations, we can abbreviate electron configurations by writing the noble gas that matches the core electron configuration, along with the valence electrons in a condensed format. For our sodium example, the symbol [Ne] represents core electrons, (1 s 2 2 s 2 2 p 6 ) and our abbreviated or condensed configuration is [Ne]3 s 1 .

This figure includes the element symbol N a, followed by the electron configuration for the element. The first part of the electron configuration, 1 s superscript 2 2 s superscript 2 2 p superscript 6, is shaded in purple and is labeled, “core electrons.” The last portion, 3 s superscript 1, is shaded orange and is labeled, “valence electron.” To the right of this configuration is the word “Abbreviation” followed by [ N e ] 3 s superscript 1.
A core-abbreviated electron configuration (right) replaces the core electrons with the noble gas symbol whose configuration matches the core electron configuration of the other element.

Similarly, the abbreviated configuration of lithium can be represented as [He]2 s 1 , where [He] represents the configuration of the helium atom, which is identical to that of the filled inner shell of lithium. Writing the configurations in this way emphasizes the similarity of the configurations of lithium and sodium. Both atoms, which are in the alkali metal family, have only one electron in a valence s subshell outside a filled set of inner shells.

Li: [ He ] 2 s 1 Na: [ Ne ] 3 s 1

The alkaline earth metal magnesium (atomic number 12), with its 12 electrons in a [Ne]3 s 2 configuration, is analogous to its family member beryllium, [He]2 s 2 . Both atoms have a filled s subshell outside their filled inner shells. Aluminum (atomic number 13), with 13 electrons and the electron configuration [Ne]3 s 2 3 p 1 , is analogous to its family member boron, [He]2 s 2 2 p 1 .

The electron configurations of silicon (14 electrons), phosphorus (15 electrons), sulfur (16 electrons), chlorine (17 electrons), and argon (18 electrons) are analogous in the electron configurations of their outer shells to their corresponding family members carbon, nitrogen, oxygen, fluorine, and neon, respectively, except that the principal quantum number of the outer shell of the heavier elements has increased by one to n = 3. [link] shows the lowest energy, or ground-state, electron configuration for these elements as well as that for atoms of each of the known elements.

A periodic table, entitled, “Electron Configuration Table” is shown. The table includes the outer electron configuration information, atomic numbers, and element symbols for all elements. A square for the element hydrogen is pulled out beneath the table to provide detail. The blue shaded square includes the atomic number in the upper left corner, which is 1, the element symbol, H in the upper right corner, and the outer electron configuration in the lower, central portion of the square. For H, this is 1 s superscript 1.
This version of the periodic table shows the outer-shell electron configuration of each element. Note that down each group, the configuration is often similar.

When we come to the next element in the periodic table, the alkali metal potassium (atomic number 19), we might expect that we would begin to add electrons to the 3 d subshell. However, all available chemical and physical evidence indicates that potassium is like lithium and sodium, and that the next electron is not added to the 3 d level but is, instead, added to the 4 s level ( [link] ). As discussed previously, the 3 d orbital with no radial nodes is higher in energy because it is less penetrating and more shielded from the nucleus than the 4 s , which has three radial nodes. Thus, potassium has an electron configuration of [Ar]4 s 1 . Hence, potassium corresponds to Li and Na in its valence shell configuration. The next electron is added to complete the 4 s subshell and calcium has an electron configuration of [Ar]4 s 2 . This gives calcium an outer-shell electron configuration corresponding to that of beryllium and magnesium.

Questions & Answers

What is stoichometry
ngwuebo Reply
what is atom
yinka Reply
An indivisible part of an element
the smallest particle of an element which is indivisible is called an atom
An atom is the smallest indivisible particle of an element that can take part in chemical reaction
is carbonates soluble
Ebuka Reply
what is the difference between light and electricity
Joshua Reply
What is atom? atom can be defined as the smallest particles
what is the difference between Anode and nodes?
What's the net equations for the three steps of dissociation of phosphoric acid?
Lisa Reply
what is chemistry
Prince Reply
the study of matter
what did the first law of thermodynamics say
Starr Reply
energy can neither be created or distroyed it can only be transferred or converted from one form to another
Graham's law of Diffusion
Ayo Reply
what is melting vaporization
Anieke Reply
melting and boiling point explain in term of molecular motion and Brownian movement
Scientific notation for 150.9433962
Steve Reply
what is aromaticity
Usman Reply
aromaticity is a conjugated pi system specific to organic rings like benzene, which have an odd number of electron pairs within the system that allows for exceptional molecular stability
what is caustic soda
Ogbonna Reply
sodium hydroxide (NaOH)
what is distilled water
is simply means a condensed water vapour
advantage and disadvantage of water to human and industry
Abdulrahman Reply
a hydrocarbon contains 7.7 percent by mass of hydrogen and 92.3 percent by mass of carbon
Timothy Reply
how many types of covalent r there
JArim Reply
how many covalent bond r there
they are three 3
TYPES OF COVALENT BOND-POLAR BOND-NON POLAR BOND-DOUBLE BOND-TRIPPLE BOND. There are three types of covalent bond depending upon the number of shared electron pairs. A covalent bond formed by the mutual sharing of one electron pair between two atoms is called a "Single Covalent bond.
Practice Key Terms 7

Get the best Chemistry course in your pocket!

Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?