# 5.3 Enthalpy  (Page 5/25)

 Page 5 / 25

## Using enthalpy of combustion

As [link] suggests, the combustion of gasoline is a highly exothermic process. Let us determine the approximate amount of heat produced by burning 1.00 L of gasoline, assuming the enthalpy of combustion of gasoline is the same as that of isooctane, a common component of gasoline. The density of isooctane is 0.692 g/mL. The combustion of gasoline is very exothermic. (credit: modification of work by “AlexEagle”/Flickr)

## Solution

Starting with a known amount (1.00 L of isooctane), we can perform conversions between units until we arrive at the desired amount of heat or energy. The enthalpy of combustion of isooctane provides one of the necessary conversions. [link] gives this value as −5460 kJ per 1 mole of isooctane (C 8 H 18 ).

Using these data,

$1.00\phantom{\rule{0.2em}{0ex}}\overline{)\text{L}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{8}{\text{H}}_{18}}\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\frac{1000\phantom{\rule{0.2em}{0ex}}\overline{)\text{mL}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{8}{\text{H}}_{18}}}{1\phantom{\rule{0.2em}{0ex}}\overline{)\text{L}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{8}{\text{H}}_{18}}}\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\frac{0.692\phantom{\rule{0.2em}{0ex}}\overline{)\text{g}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{8}{\text{H}}_{18}}}{1\phantom{\rule{0.2em}{0ex}}\overline{)\text{mL}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{8}{\text{H}}_{18}}}\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\frac{1\phantom{\rule{0.2em}{0ex}}\overline{)\text{mol}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{8}{\text{H}}_{18}}}{114\phantom{\rule{0.2em}{0ex}}\overline{)\text{g}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{8}{\text{H}}_{18}}}\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\frac{-5460\phantom{\rule{0.2em}{0ex}}\text{kJ}}{1\phantom{\rule{0.2em}{0ex}}\overline{)\text{mol}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{8}{\text{H}}_{18}}}\phantom{\rule{0.2em}{0ex}}=-3.31\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{4}\text{kJ}$

The combustion of 1.00 L of isooctane produces 33,100 kJ of heat. (This amount of energy is enough to melt 99.2 kg, or about 218 lbs, of ice.)

Note: If you do this calculation one step at a time, you would find:

$\begin{array}{l}\\ 1.00\phantom{\rule{0.2em}{0ex}}\text{L}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{8}{\text{H}}_{18}\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}1.00\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{3}\phantom{\rule{0.2em}{0ex}}\text{mL}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{8}{\text{H}}_{18}\\ 1.00\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{3}\phantom{\rule{0.2em}{0ex}}\text{mL}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{8}{\text{H}}_{18}\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}692\phantom{\rule{0.2em}{0ex}}\text{g}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{8}{\text{H}}_{18}\\ 692\phantom{\rule{0.2em}{0ex}}\text{g}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{8}{\text{H}}_{18}\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}6.07\phantom{\rule{0.2em}{0ex}}\text{mol}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{8}{\text{H}}_{18}\\ 692\phantom{\rule{0.2em}{0ex}}\text{g}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{8}{\text{H}}_{18}\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}-3.31\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{4}\text{kJ}\end{array}$

## Check your learning

How much heat is produced by the combustion of 125 g of acetylene?

6.25 $×$ 10 3 kJ

## Emerging algae-based energy technologies (biofuels)

As reserves of fossil fuels diminish and become more costly to extract, the search is ongoing for replacement fuel sources for the future. Among the most promising biofuels are those derived from algae ( [link] ). The species of algae used are nontoxic, biodegradable, and among the world’s fastest growing organisms. About 50% of algal weight is oil, which can be readily converted into fuel such as biodiesel. Algae can yield 26,000 gallons of biofuel per hectare—much more energy per acre than other crops. Some strains of algae can flourish in brackish water that is not usable for growing other crops. Algae can produce biodiesel, biogasoline, ethanol, butanol, methane, and even jet fuel. (a) Tiny algal organisms can be (b) grown in large quantities and eventually (c) turned into a useful fuel such as biodiesel. (credit a: modification of work by Micah Sittig; credit b: modification of work by Robert Kerton; credit c: modification of work by John F. Williams)

According to the US Department of Energy, only 39,000 square kilometers (about 0.4% of the land mass of the US or less than $\frac{1}{7}$ of the area used to grow corn) can produce enough algal fuel to replace all the petroleum-based fuel used in the US. The cost of algal fuels is becoming more competitive—for instance, the US Air Force is producing jet fuel from algae at a total cost of under \$5 per gallon. For more on algal fuel, see http://www.theguardian.com/environment/2010/feb/13/algae-solve-pentagon-fuel-problem. The process used to produce algal fuel is as follows: grow the algae (which use sunlight as their energy source and CO 2 as a raw material); harvest the algae; extract the fuel compounds (or precursor compounds); process as necessary (e.g., perform a transesterification reaction to make biodiesel); purify; and distribute ( [link] ). Algae convert sunlight and carbon dioxide into oil that is harvested, extracted, purified, and transformed into a variety of renewable fuels.

#### Questions & Answers

is methane a molecule
yes
Miriam
what is chemistry
abubakar
calculations for solubility
Whats d IUPAC Numenclature of bromine
The common name is therefore propyl bromide . For the IUPAC name , the prefix for bromine (bromo) is combined with the name for a three-carbon chain (propane), preceded by a number identifying the carbon atom to which the Br atom is attached, so the IUPAC name is 1-bromopropane.
crystal
What is Quantum number
what are the chemical properties of group IIA Element and their atomic structure?
What is mixture
A mixture is a mix of substances that can be separated
Lillie
what is quantum number
Hmm
kedis
I suck at chemistry I need a tutor
kedis
h20 hydrates, nitrogen/dry ice lowers pressure similar to space environment when heated at what location/temp.? +or-, expect location (xyz)
Brian
hey kedis,never say that u suck,u don't,all u need is to calm down,get the book and get the points,no need to read it word by word or a-z. ur good bro,u r veeeery intelligent
UDUJI
awwwww
Cereal
what's neuron?
neuron or neutron?
John
cell of the nerve
Kamaluddeen
prepare a solution of 1m iodine in 250mls of water
Really
Wisdom
Hiiii am new here
Wisdom
Really
Wisdom
WHAT IS CHEMISTRY?
RJ
Chemistry is the study of matter
Wisdom
chemistry is the study of matter and changes it undergoes
Mercy
what is equilibrium
what is biology
Fatai
biology is said to be the science of studying life and living organism including theirs physical structure,chemical processes, molecular interaction development and evolution
David
atomic number of sodium
bose
that'll be 11
Kamaluddeen
ok
bose
anymore questions 😁
Franklin
re u writing jamb
bose
please, how man Bond are present when a methane under goes a complete combustion
Combustion of Methane The reactants are on the left side of the equation and the products are on the right. In the reaction, the bonds in the methane and oxygen come apart, the atoms rearrange and then re-bond to form water and carbon dioxide.
saidi
how is ethanol produced using ethene
Glory
Ethanol is manufactured by reacting ethene with steam. The reaction is reversible, and the formation of the ethanol is exothermic. Only 5% of the ethene is converted intoethanol at each pass through the reactor
saidi
Ethanol can be made by reacting ethene (from cracking crude oil fractions) with steam. A catalyst of phosphoric acid is used to ensure a fast reaction. Notice that ethanol is the only product. The process is continuous – as long as ethene and steam are fed into one end of the reaction vessel, ethano
saidi
the mole concerpt and its tricks
what are atoms
the individual elements of matter.
Reginald
tiny particles that make up a all matter.
Reginald
smallest particles of an element
Osuji
What is the meaning of hybridization
Differentiate between latent heat and specific latent heat of fusion and vaporization
Ans: The amount of heat energy released or absorbed when a solid changing to liquid at atmospheric pressure at its melting point is known as the latent heat of fusion. while Vaporization of an element or compound is a phase transition from the liquid phase to vapor.
Acquah By By   By Eric Crawford By   By Subramanian Divya  By 