# 5.2 Calorimetry

 Page 1 / 14
By the end of this section, you will be able to:
• Explain the technique of calorimetry
• Calculate and interpret heat and related properties using typical calorimetry data

One technique we can use to measure the amount of heat involved in a chemical or physical process is known as calorimetry    . Calorimetry is used to measure amounts of heat transferred to or from a substance. To do so, the heat is exchanged with a calibrated object (calorimeter). The change in temperature of the measuring part of the calorimeter is converted into the amount of heat (since the previous calibration was used to establish its heat capacity). The measurement of heat transfer using this approach requires the definition of a system    (the substance or substances undergoing the chemical or physical change) and its surroundings    (the other components of the measurement apparatus that serve to either provide heat to the system or absorb heat from the system). Knowledge of the heat capacity of the surroundings, and careful measurements of the masses of the system and surroundings and their temperatures before and after the process allows one to calculate the heat transferred as described in this section.

A calorimeter    is a device used to measure the amount of heat involved in a chemical or physical process. For example, when an exothermic reaction occurs in solution in a calorimeter, the heat produced by the reaction is absorbed by the solution, which increases its temperature. When an endothermic reaction occurs, the heat required is absorbed from the thermal energy of the solution, which decreases its temperature ( [link] ). The temperature change, along with the specific heat and mass of the solution, can then be used to calculate the amount of heat involved in either case. In a calorimetric determination, either (a) an exothermic process occurs and heat, q , is negative, indicating that thermal energy is transferred from the system to its surroundings, or (b) an endothermic process occurs and heat, q , is positive, indicating that thermal energy is transferred from the surroundings to the system.

Scientists use well-insulated calorimeters that all but prevent the transfer of heat between the calorimeter and its environment. This enables the accurate determination of the heat involved in chemical processes, the energy content of foods, and so on. General chemistry students often use simple calorimeters constructed from polystyrene cups ( [link] ). These easy-to-use “coffee cup” calorimeters allow more heat exchange with their surroundings, and therefore produce less accurate energy values. A simple calorimeter can be constructed from two polystyrene cups. A thermometer and stirrer extend through the cover into the reaction mixture.

Commercial solution calorimeters are also available. Relatively inexpensive calorimeters often consist of two thin-walled cups that are nested in a way that minimizes thermal contact during use, along with an insulated cover, handheld stirrer, and simple thermometer. More expensive calorimeters used for industry and research typically have a well-insulated, fully enclosed reaction vessel, motorized stirring mechanism, and a more accurate temperature sensor ( [link] ).

how many grams of calcium contain atoms of calcium equal to iron atoms in 5.6g of iron
what is d meaning of organic chemistry
it's a compound that comprises of hydrocarbon
Omoru
what iz alkanol
alkanol there are organic compounds with the functional group of ROH and relative molecular formula (CnH2n+1+OH)
Omoru
ok tnk u
icha
you are welcome
Omoru
Sam. A
frbsaz
What's alkaline soil
a system in which only energy is transferred between the system and the surrounding is called?
which Element exhibit diagonal relationship with aluminum
Ani
following processes: Solid phosphorus pentachloride decomposes to liquid phosphorus trichloride and chlorine gas b. Deep blue solid copper(II) sulfate pentahydrate is heated to drive off water vapor to form white solid copper(II) sulfate
Ssskma
frbsaz
How to know periodic table oftend
u can know it through singing it as song it simple
Elizabeth
how to get atomic number of an element
how do you solve the examples in a much more explanatory way
Ogunleye
it seems by multiplying d number of d element by 2
Elizabeth
E.g like carbon 6*2=12 so d atomic number is 12
Elizabeth
The reaction of aceto nitrile with propane in the presence of the acid
Sskma
frbsaz
Explain this paragraph in short
What is solid state?
What is chemical reaction
Manish
transforming reactants to product(s)
Andre
process
Andre
solid state is composed of tightly particles and it has a definite shape and volume
Elizabeth
Example of Lewis acid
Example of Lewis acid
Chidera
Chlorine
Anything with an empty orbital... the hydrogen ion is the most common example. BH3 is the typical example, but any metal in a coordination complex can be considered a Lewis acid.
Eszter
okay thanks
Jovial
aluminium and sulphur react to give aluminium sulfide.How many grams of Al are required to produce 100g of aluminium sulphide
aluminium and sulphur react to give aluminium sulphide how many grams of Al are required to produce 100g of aluminium sulphide?
Soni
aluminium and sulphur react to give aluminium sulphide how many grams of Al are required to produce 100g of aluminium sulphide?
Soni
2Al+3S=Al2S3
galina
m(Al)=100×27×2/150=36g
galina
150 comes from?
Soni
thank you very much
Soni
molar mass of Al2S3
galina
150.158
thiru
what's periodic table
Agnes
Why can't atom be created or destroyed
matter simply converts to pure energy
that's nice
Meshach
explain how to distinguish ethanol from a sample of ethanoic acid by chemical test
explain how ethanol can be distinguished from ethanoic acid by chemical test
Alice By By OpenStax By Angela Eckman By Mike Wolf By Brooke Delaney By Brooke Delaney By Miranda Reising By Maureen Miller By OpenStax By Jonathan Long By OpenStax