<< Chapter < Page Chapter >> Page >

The name of an alkene is derived from the name of the alkane with the same number of carbon atoms. The presence of the double bond is signified by replacing the suffix -ane with the suffix -ene . The location of the double bond is identified by naming the smaller of the numbers of the carbon atoms participating in the double bond:

Four structural formulas and names are shown. The first shows two red C atoms connected by a red double bond illustrated with two parallel line segments. H atoms are bonded above and below to the left of the left-most C atom. Two more H atoms are similarly bonded to the right of the C atom on the right. Beneath this structure the name ethene and alternate name ethylene are shown. The second shows three C atoms bonded together with a red double bond between the red first and second C atoms moving left to right across the three-carbon chain. H atoms are bonded above and below to the left of the C atom to the left. A single H is bonded above the middle C atom. Three more H atoms are bonded above, below, and to the right of the third C atom. Beneath this structure the name propene and alternate name propylene is shown. The third shows four C atoms bonded together, numbered one through four moving left to right with a red double bond between the red first and second carbon in the chain. H atoms are bonded above and below to the left of the C atom to the left. A single H is bonded above the second C atom. H atoms are bonded above and below the third C atom. Three more H atoms are bonded above, below, and to the right of the fourth C atom. Beneath this structure the name 1 dash butene is shown. The fourth shows four C atoms bonded together, numbered one through four moving left to right with a red double bond between the red second and third C atoms in the chain. H atoms are bonded above, below, and to the left of the left-most C atom. A single H atom is bonded above the second C atom. A single H atom is bonded above the third C atom. Three more H atoms are bonded above, below, and to the right of the fourth C atom. Beneath this structure the name 2 dash butene is shown.

Isomers of alkenes

Molecules of 1-butene and 2-butene are structural isomers; the arrangement of the atoms in these two molecules differs. As an example of arrangement differences, the first carbon atom in 1-butene is bonded to two hydrogen atoms; the first carbon atom in 2-butene is bonded to three hydrogen atoms.

The compound 2-butene and some other alkenes also form a second type of isomer called a geometric isomer. In a set of geometric isomers, the same types of atoms are attached to each other in the same order, but the geometries of the two molecules differ. Geometric isomers of alkenes differ in the orientation of the groups on either side of a C = C bond.

Carbon atoms are free to rotate around a single bond but not around a double bond; a double bond is rigid. This makes it possible to have two isomers of 2-butene, one with both methyl groups on the same side of the double bond and one with the methyl groups on opposite sides. When structures of butene are drawn with 120° bond angles around the sp 2 -hybridized carbon atoms participating in the double bond, the isomers are apparent. The 2-butene isomer in which the two methyl groups are on the same side is called a cis -isomer; the one in which the two methyl groups are on opposite sides is called a trans -isomer ( [link] ). The different geometries produce different physical properties, such as boiling point, that may make separation of the isomers possible:

The figure illustrates three ways to represent isomers of butene. In the first row of the figure, Lewis structural formulas show carbon and hydrogen element symbols and bonds between the atoms. The first structure in this row shows a C atom with a double bond to another C atom which is bonded down and to the right to C H subscript 2 which, in turn, is bonded to C H subscript 3. The first C atom, moving from left to right, has two H atoms bonded to it and the second C atom has one H atom bonded to it. The second structure in the row shows a C atom with a double bond to another C atom. The first C atom is bonded to an H atom up and to the left and C H subscript 3 down and to the left. The second C atom is bonded to an H atom up and to the right and C H subscript 3 down and to the right. Both C H subscript 3 structures appear in red. The third structure shows a C atom with a double bond to another C atom. The first C atom from the left is bonded up to a the left to C H subscript 3 which appears and red. It is also bonded down and to the left to an H atom. The second C atom is bonded up and to the right to an H atom and down and to the left to C H subscript 3 which appears in red. In the second row, ball-and-stick models for the structures are shown. In these representations, single bonds are represented with sticks, double bonds are represented with two parallel sticks, and elements are represented with balls. C atoms are black and H atoms are white in this image. In the third row, space-filling models are shown. In these models, atoms are enlarged and pushed together, without sticks to represent bonds. In the final row, names are provided. The molecule with the double bond between the first and second carbons is named 1 dash butene. The two molecules with the double bond between the second and third carbon atoms is called 2 dash butene. The first model, which has both C H subscript 3 groups beneath the double bond is called the cis isomer. The second which has the C H subscript 3 groups on opposite sides of the double bond is named the trans isomer.
These molecular models show the structural and geometric isomers of butene.

Alkenes are much more reactive than alkanes because the C = C moiety is a reactive functional group. A π bond, being a weaker bond, is disrupted much more easily than a σ bond. Thus, alkenes undergo a characteristic reaction in which the π bond is broken and replaced by two σ bonds. This reaction is called an addition reaction    . The hybridization of the carbon atoms in the double bond in an alkene changes from sp 2 to sp 3 during an addition reaction. For example, halogens add to the double bond in an alkene instead of replacing hydrogen, as occurs in an alkane:

This diagram illustrates the reaction of ethene and C l subscript 2 to form 1 comma 2 dash dichloroethane. In this reaction, the structural formula of ethane is shown. It has a double bond between the two C atoms with two H atoms bonded to each C atom plus C l bonded to C l. This is shown on to the left of an arrow. The two C atoms and the double bond between them are shown in red. To the right of the arrow, the 1 comma 2 dash dichloroethane molecule is shown. It has only single bonds and each C atom has a C l with three pairs of electron dots bonded beneath it. The C and C l atoms, single bond between them, and electron pairs are shown in red. Each C atom also has two H atoms bonded to it.

Alkene reactivity and naming

Provide the IUPAC names for the reactant and product of the halogenation reaction shown here:

The left side of a reaction and arrow are shown with an empty product side. On the left, C H subscript 3 is bonded down and to the right to C H which has a double bond to another C H. The second C H is bonded up and to the right to C H subscript 2 which is also bonded to C H subscript 3. A plus sign is shown with a C l atom bonded to a C l atom following it. This is also followed by a reaction arrow.

Solution

The reactant is a five-carbon chain that contains a carbon-carbon double bond, so the base name will be pentene. We begin counting at the end of the chain closest to the double bond—in this case, from the left—the double bond spans carbons 2 and 3, so the name becomes 2-pentene. Since there are two carbon-containing groups attached to the two carbon atoms in the double bond—and they are on the same side of the double bond—this molecule is the cis- isomer, making the name of the starting alkene cis -2-pentene. The product of the halogenation reaction will have two chlorine atoms attached to the carbon atoms that were a part of the carbon-carbon double bond:

C H subscript 3 is bonded down and to the right to C H which is bonded down and to the left to C l. C H is also bonded to another C H which is bonded down and to the right to C l and up and to the right to C H subscript 2. C H subscript 2 is also bonded to C H subscript 3.

This molecule is now a substituted alkane and will be named as such. The base of the name will be pentane. We will count from the end that numbers the carbon atoms where the chlorine atoms are attached as 2 and 3, making the name of the product 2,3-dichloropentane.

Check your learning

Provide names for the reactant and product of the reaction shown:

This shows a C atom bonded to three H atoms and another C atom. This second C atom is bonded to two H atoms and a third C atom. This third C atom is bonded to one H atom and also forms a double bond with a fourth C atom. This fourth C atom is bonded to one H atom and a fifth C atom. This fifth C atom is bonded to two H atoms and a sixth C atom. This sixth C atom is bonded to three H atoms. There is a plus sign followed by a C l atom bonded to another C l atom. There is a reaction arrow. no products are shown.

Answer:

reactant: cis-3-hexene product: 3,4-dichlorohexane

Got questions? Get instant answers now!

Questions & Answers

pls how can I give an IUPAC nomenclature in organic chemistry
Moshood Reply
Paul's exclusion principle
Anuforo Reply
what do you mean by d block ,give more details element
Agburum Reply
Define chemical formula
Kevin Reply
they are the mathematical representation of chemicals I guess
Uche
Bohr model of hydrogen atom
Muhammad Reply
what is important of this model
nagesh
what is the main reaction between sodium and chlorine
Akeem Reply
when a sodium atom is transferred an electron to a chloride atom forming a sodium cation and a chlorde anoin both ions are compltely valence shells and a energetically more stable this reaction is extremely more exothermic producing a bright yellow light abd a great deal of heat energy
sani
well what kind of sodium
coland
sodium chloride
coland
Tyropanoic acid and its salt sodium tyropanoate are radiocontrast agents used in cholecystography (X-ray diagnosis of gallstones). Trade names include Bilopaque, Lumopaque, Tyropaque, and Bilopac. The molecule contains three heavy iodine atoms which obstruct X-rays in the same way as the calcium in
coland
Sodium tetradecyl sulfate (STS) is a commonly used synonym for 7-ethyl-2-methyl-4-undecanyl sulfate sodium salt which is anionic surfactant that is the active component of the sclerosant drug Sotradecol. It is commonly used in the treatment of varicose and spider veins of the leg, during the procedu
coland
Sodium stibogluconate, sold under the brand name Pentostam among others, is a medication used to treat leishmaniasis. This includes leishmaniasis of the cutaneous, visceral, and mucosal types. Some combination of miltefosine, paramycin and liposomal amphotericin B; however, may be recommended due to
coland
Sodium picosulfate (INN, also known as sodium picosulphate) is a Contact stimulant laxative used as a treatment for constipation or to prepare the large bowel before colonoscopy or surgery. It is sold under the trade names Sodipic Picofast, Laxoberal, Laxoberon, Purg-Odan, Picolax, Guttalax, Namilax
coland
Ipodate sodium (sodium iopodate) is an iodine-containing radiopaque contrast media used for X-rays. The drug is given orally and the resulting contrast allows for easy resolution of the bile duct and gall bladder. Other uses Although not FDA approved, ipodate sodium has been used to treat Graves'
coland
Sodium ferric gluconate complex (brand name ferrlecit by Sanofi), is an intravenously administered iron product indicated in the treatment of iron deficiency anemia. It is frequently used in patients undergoing hemodialysis, those undergoing erythropoietin therapy, and/or patients who have chronic k
coland
Dehydrocholic acid is a synthetic bile acid, manufactured by the oxidation of cholic acid. It acts as a hydrocholeretic, increasing bile output to clear increased bile acid load.
coland
Ethylenediaminetetraacetic acid (EDTA), also known by several other names, is an aminopolycarboxylic acid and a colourless, water-soluble solid. Its conjugate base is ethylenediaminetetraacetate. It is widely used to dissolve limescale. Its usefulness arises because of its role as a hexadentate ("s
coland
Sodium aurothiomalate (INN, known in the United States as gold sodium thiomalate) is a gold compound that is used for its immunosuppressive anti-rheumatic effects. Along with an orally-administered gold salt, auranofin, it is one of only two gold compounds currently employed in modern medicine. Med
coland
Sodium ascorbate is one of a number of mineral salts of ascorbic acid (vitamin C). The molecular formula of this chemical compound is C6H7NaO6. As the sodium salt of ascorbic acid, it is known as a mineral ascorbate. It has not been demonstrated to be more bioavailable than any other form of vitamin
coland
Diatrizoic acid (or its anionic form, diatrizoate), also known as amidotrizoic acid, or 3,5-diacetamido-2,4,6-triiodobenzoic acid, is a radiocontrast agent containing iodine. Trade names include Hypaque, Gastrografin, Iothalmate and Urografin, the latter being a combination of the sodium and meglum
coland
Sodium acetrizoate (rINN, trade names Urokon, Triurol and Salpix), the sodium salt of acetrizoic acid, is a high-osmolality, water-soluble, iodine-based radiographic contrast medium no longer in clinical use. Acetrizoate was developed by V.H. Wallingford of Mallinckrodt, and introduced in 1950; it
coland
i think some was missed
coland
what chlorine L-Alpha glycerylphosphorylcholine (alpha-GPC, choline alfoscerate) is a natural choline compound found in the brain. It is also a parasympathomimetic acetylcholine precursor which may have potential for the treatment of Alzheimer's disease and other dementias. Alpha-GPC rapidly delive
coland
Choline Theophyllinate , also known as oxtriphylline, is a cough medicine derived from xanthine that acts as a bronchodilator to open up airways in the lung. Chemically, it is a salt of choline and Theophylline. It classifies as an expectorant. The drug is available under the brand names Choledyl an
coland
Choline (/ˈkoʊlin/) is a water-soluble vitamin. It is usually grouped within the B-complex vitamins. The term cholines refers to the class of quaternary ammonium salts containing the N,N,N-trimethylethanolammonium cation (X− on the right denotes an undefined counteranion). The cation appears in the
coland
thanks
sani
please what is redox reaction
BABARINDE
hydrogen reacting with water
Iyenge Reply
what is matter
Godgift Reply
matter is anything that has Mass and can occupy space
Moshood
apart from those device there is there any device
Eke Reply
how many elements do we have
ARUOTURE Reply
Modern Electronic Theory
Levi Reply
a new way or an improvement in modern electrical products.
Andrew
find the volume of oxygen produced from the electrolysis of acidified water of a current of a 2A was passed through the electrolysis of acidified water for 2 hours
Ngwu Reply
14400J
Ese
wrong question, go through it. oxygen cannot be produced.
Andrew
A group of atoms that are connected by chemical bounds
Valerie Reply
molecule
NARCOS_
the atoms are found in the shell, it is called atomic bond.
Andrew
what is molecules
Kelly Reply
what atoms
Simon
Moecules are groups of atoms
Adewole
atom is the smallest part of an element or matter that indivisible
Ese
What is collision theory
Isah Reply

Get the best Chemistry course in your pocket!





Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask