<< Chapter < Page Chapter >> Page >
The figure illustrates three ways to represent molecules of n dash butane and 2 dash methlylpropane. In the first row of the figure, Lewis structural formulas show element symbols and bonds between atoms. The n dash butane molecule shows 4 carbon atoms represented by the letter C bonded in a straight horizontal chain with hydrogen atoms represented by the letter H bonded above and below all carbon atoms. H atoms are bonded at the ends to the left and right of the left-most and right-most C atoms. In the second row, ball-and-stick models are shown. In these representations, bonds are represented with sticks, and elements are represented with balls. Carbon atoms are black and hydrogen atoms are white in this image. In the third row, space-filling models are shown. In these models, atoms are enlarged and pushed together, without sticks to represent bonds. The molecule names are provided in the fourth row.

The compounds n -butane and 2-methylpropane are structural isomers (the term constitutional isomers is also commonly used). Constitutional isomers have the same molecular formula but different spatial arrangements of the atoms in their molecules. The n -butane molecule contains an unbranched chain , meaning that no carbon atom is bonded to more than two other carbon atoms. We use the term normal , or the prefix n , to refer to a chain of carbon atoms without branching. The compound 2–methylpropane has a branched chain (the carbon atom in the center of the Lewis structure is bonded to three other carbon atoms)

Identifying isomers from Lewis structures is not as easy as it looks. Lewis structures that look different may actually represent the same isomers. For example, the three structures in [link] all represent the same molecule, n -butane, and hence are not different isomers. They are identical because each contains an unbranched chain of four carbon atoms.

The figure illustrates three ways to represent molecules of n dash butane. In the first row of the figure, Lewis structural formulas show carbon and hydrogen element symbols and bonds between the atoms. The first structure in this row shows three of the linked C atoms in a horizontal row with a single C atom bonded above the left-most carbon. The left-most C atom has two H atoms bonded to it. The C atom bonded above the left-most C atom has three H atoms bonded to it. The C atom bonded to the right of the left-most C atom has two H atoms bonded to it. The right-most C atom has three H atoms bonded to it. The C atoms and the bonds connecting all the C atoms are red. The second structure in the row similarly shows the row of three linked C atoms with a single C atom bonded below the C atom to the left. The left-most C atom has two H atoms bonded to it. The C atom bonded below the left-most C atom has three H atoms bonded to it. The C atom bonded to the right of the left-most C atom has two H atoms bonded to it. The right-most atom has three H atoms bonded to it. All the C atoms and the bonds between them are red. The third structure has two C atoms bonded in a row with a third C atom bonded above the left C atom and the fourth C atom bonded below the right C atom. The C atom bonded above the left C atom has three H atoms bonded to it. The left C atom has two H atoms bonded to it. The right C atom has two H atoms bonded to it. The C atom bonded below the right C atom has three H atoms bonded to it. All the C atoms and the bonds between them are red. In the second row, ball-and-stick models for the structures are shown. In these representations, bonds are represented with sticks, and elements are represented with balls. Carbon atoms are black and hydrogen atoms are white in this image. In the third row, space-filling models are shown. In these models, atoms are enlarged and pushed together, without sticks to represent bonds.
These three representations of the structure of n-butane are not isomers because they all contain the same arrangement of atoms and bonds.

The basics of organic nomenclature: naming alkanes

The International Union of Pure and Applied Chemistry ( IUPAC ) has devised a system of nomenclature that begins with the names of the alkanes and can be adjusted from there to account for more complicated structures. The nomenclature for alkanes is based on two rules:

  1. To name an alkane, first identify the longest chain of carbon atoms in its structure. A two-carbon chain is called ethane; a three-carbon chain, propane; and a four-carbon chain, butane. Longer chains are named as follows: pentane (five-carbon chain), hexane (6), heptane (7), octane (8), nonane (9), and decane (10). These prefixes can be seen in the names of the alkanes described in [link] .
  2. Add prefixes to the name of the longest chain to indicate the positions and names of substituents . Substituents are branches or functional groups that replace hydrogen atoms on a chain. The position of a substituent or branch is identified by the number of the carbon atom it is bonded to in the chain. We number the carbon atoms in the chain by counting from the end of the chain nearest the substituents. Multiple substituents are named individually and placed in alphabetical order at the front of the name.
This figure shows structural formulas for propane, 2 dash chloropropane, 2 dash methylpropane, 2 comma 4 dash difluorohexane, and 1 dash bromo dash 3 dash chlorohexane. In each of the structures, the carbon atoms are in a row with bonded halogen atoms and a methyl group bonded below the figures. Propane is listed as simply C H subscript 3 C H subscript 2 C H subscript 3, with the numbers 1, 2, and 3 appearing above the carbon atoms from left to right. 2 dash chloropropane similarly shows C H subscript 3 C H C H subscript 3, with the numbers 1, 2, and 3 appearing above the carbon atoms from left to right. A C l atom is bonded below carbon 2. The C l atom is red. 2 dash methylpropane similarly shows C H subscript 3 C H C H subscript 3, with the numbers 3, 2, and 1 appearing above the carbon atoms from left to right. A C H subscript 3 group is bonded beneath carbon 2 and is red. 2 comma 4 dash difluorohexane similarly shows C H subscript 3 C H subscript 2 C H C H subscript 2 C H C H subscript 3, with the numbers 6, 5, 4, 3, 2, and 1 appearing above the carbon atoms from left to right. F atoms are bonded to carbons 4 and 2 at the bottom of the structure and are red. 1 dash bromo dash 3 dash chlorohexane similarly shows C H subscript 2 C H subscript 2 C H C H subscript 2 C H subscript 2 C H subscript 3, with numbers 1, 2, 3, 4, 5, and 6 appearing above the carbon atoms from left to right. B r is bonded below carbon 1 and C l is bonded below carbon 3. Both B r and C l are red.

When more than one substituent is present, either on the same carbon atom or on different carbon atoms, the substituents are listed alphabetically. Because the carbon atom numbering begins at the end closest to a substituent, the longest chain of carbon atoms is numbered in such a way as to produce the lowest number for the substituents. The ending -o replaces -ide at the end of the name of an electronegative substituent (in ionic compounds, the negatively charged ion ends with -ide like chloride; in organic compounds, such atoms are treated as substituents and the -o ending is used). The number of substituents of the same type is indicated by the prefixes di- (two), tri- (three), tetra- (four), and so on (for example, difluoro- indicates two fluoride substituents).

Questions & Answers

is methane a molecule
Okologwu Reply
yes
Miriam
what is chemistry
abubakar
calculations for solubility
malachi Reply
Whats d IUPAC Numenclature of bromine
Emmanuel Reply
The common name is therefore propyl bromide . For the IUPAC name , the prefix for bromine (bromo) is combined with the name for a three-carbon chain (propane), preceded by a number identifying the carbon atom to which the Br atom is attached, so the IUPAC name is 1-bromopropane.
crystal
What is Quantum number
Derick Reply
what are the chemical properties of group IIA Element and their atomic structure?
NATHAN Reply
What is mixture
Azeez Reply
A mixture is a mix of substances that can be separated
Lillie
what is quantum number
Baba Reply
Hmm
kedis
I suck at chemistry I need a tutor
kedis
h20 hydrates, nitrogen/dry ice lowers pressure similar to space environment when heated at what location/temp.? +or-, expect location (xyz)
Brian
hey kedis,never say that u suck,u don't,all u need is to calm down,get the book and get the points,no need to read it word by word or a-z. ur good bro,u r veeeery intelligent
UDUJI
awwwww
Cereal
what's neuron?
Kelvin Reply
neuron or neutron?
John
cell of the nerve
Kamaluddeen
prepare a solution of 1m iodine in 250mls of water
Dj Reply
Really
Wisdom
Hiiii am new here
Wisdom
Really
Wisdom
WHAT IS CHEMISTRY?
RJ
Chemistry is the study of matter
Wisdom
chemistry is the study of matter and changes it undergoes
Mercy
what is equilibrium
Fatai Reply
what is biology
Fatai
biology is said to be the science of studying life and living organism including theirs physical structure,chemical processes, molecular interaction development and evolution
David
atomic number of sodium
bose
that'll be 11
Kamaluddeen
ok
bose
anymore questions 😁
Franklin
re u writing jamb
bose
please, how man Bond are present when a methane under goes a complete combustion
moses Reply
Combustion of Methane The reactants are on the left side of the equation and the products are on the right. In the reaction, the bonds in the methane and oxygen come apart, the atoms rearrange and then re-bond to form water and carbon dioxide.
saidi
how is ethanol produced using ethene
Glory
Ethanol is manufactured by reacting ethene with steam. The reaction is reversible, and the formation of the ethanol is exothermic. Only 5% of the ethene is converted intoethanol at each pass through the reactor
saidi
Ethanol can be made by reacting ethene (from cracking crude oil fractions) with steam. A catalyst of phosphoric acid is used to ensure a fast reaction. Notice that ethanol is the only product. The process is continuous – as long as ethene and steam are fed into one end of the reaction vessel, ethano
saidi
the mole concerpt and its tricks
Mary Reply
what are atoms
ola Reply
the individual elements of matter.
Reginald
tiny particles that make up a all matter.
Reginald
smallest particles of an element
Osuji
What is the meaning of hybridization
JOSEPH Reply
Differentiate between latent heat and specific latent heat of fusion and vaporization
Amos Reply
Ans: The amount of heat energy released or absorbed when a solid changing to liquid at atmospheric pressure at its melting point is known as the latent heat of fusion. while Vaporization of an element or compound is a phase transition from the liquid phase to vapor.
Acquah

Get the best Chemistry course in your pocket!





Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask