# 19.1 Occurrence, preparation, and properties of transition metals  (Page 12/27)

 Page 12 / 27

Iron(II) can be oxidized to iron(III) by dichromate ion, which is reduced to chromium(III) in acid solution. A 2.5000-g sample of iron ore is dissolved and the iron converted into iron(II). Exactly 19.17 mL of 0.0100 M Na 2 Cr 2 O 7 is required in the titration. What percentage of the ore sample was iron?

2.57%

How many cubic feet of air at a pressure of 760 torr and 0 °C is required per ton of Fe 2 O 3 to convert that Fe 2 O 3 into iron in a blast furnace? For this exercise, assume air is 19% oxygen by volume.

Find the potentials of the following electrochemical cell:

Cd | Cd 2+ , M = 0.10 ‖ Ni 2+ , M = 0.50 | Ni

0.167 V

A 2.5624-g sample of a pure solid alkali metal chloride is dissolved in water and treated with excess silver nitrate. The resulting precipitate, filtered and dried, weighs 3.03707 g. What was the percent by mass of chloride ion in the original compound? What is the identity of the salt?

The standard reduction potential for the reaction ${\left[\text{Co}{\left({\text{H}}_{2}\text{O}\right)}_{6}\right]}^{3+}\left(aq\right)+{\text{e}}^{-}\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\left[{\text{Co}\left(\text{H}}_{2}\text{O}{\right)}_{6}\right]}^{2+}\left(aq\right)$ is about 1.8 V. The reduction potential for the reaction ${\left[\text{Co}{\left({\text{NH}}_{3}\right)}_{6}\right]}^{3+}\left(aq\right)+{\text{e}}^{-}\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\left[\text{Co}{\left({\text{NH}}_{3}\right)}_{6}\right]}^{2+}\left(aq\right)$ is +0.1 V. Calculate the cell potentials to show whether the complex ions, [Co(H 2 O) 6 ] 2+ and/or [Co(NH 3 ) 6 ] 2+ , can be oxidized to the corresponding cobalt(III) complex by oxygen.

E ° = −0.6 V, E ° is negative so this reduction is not spontaneous. E ° = +1.1 V

Predict the products of each of the following reactions. (Note: In addition to using the information in this chapter, also use the knowledge you have accumulated at this stage of your study, including information on the prediction of reaction products.)

(a) ${\text{MnCO}}_{3}\left(s\right)+\text{HI}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶$

(b) $\text{CoO}\left(s\right)+{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶$

(c) $\text{La}\left(s\right)+{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶$

(d) $\text{V}\left(s\right)+{\text{VCl}}_{4}\left(s\right)\phantom{\rule{0.2em}{0ex}}⟶$

(e) $\text{Co}\left(s\right)+{xs\text{F}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶$

(f) ${\text{CrO}}_{3}\left(s\right)+\text{CsOH}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶$

Predict the products of each of the following reactions. (Note: In addition to using the information in this chapter, also use the knowledge you have accumulated at this stage of your study, including information on the prediction of reaction products.)

(a) $\text{Fe}\left(s\right)+{\text{H}}_{2}{\text{SO}}_{4}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶$

(b) ${\text{FeCl}}_{3}\left(aq\right)+\text{NaOH}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶$

(c) $\text{Mn}{\left(\text{OH}\right)}_{2}\left(s\right)+\text{HBr}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶$

(d) $\text{Cr}\left(s\right)+{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶$

(e) ${\text{Mn}}_{2}{\text{O}}_{3}\left(s\right)+\text{HCl}\left(aq\right)⟶$

(f) $\text{Ti}\left(s\right)+xs{\text{F}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶$

(a) $\text{Fe}\left(s\right)+2{\text{H}}_{3}{\text{O}}^{\text{+}}\left(aq\right)+{\text{SO}}_{4}{}^{2-}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{Fe}}^{2+}\left(aq\right)+{\text{SO}}_{4}{}^{2-}\left(aq\right)+{\text{H}}_{2}\left(g\right)+2{\text{H}}_{2}\text{O}\left(l\right);$ (b) ${\text{FeCl}}_{3}\left(aq\right)+{\text{3Na}}^{\text{+}}\left(aq\right)+{\text{3OH}}^{\text{−}}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\text{Fe}{\left(\text{OH}\right)}_{3}\left(s\right)+{\text{3Na}}^{\text{+}}\left(aq\right)+{\text{3Cl}}^{\text{+}}\left(aq\right);$ (c) $\text{Mn}{\left(\text{OH}\right)}_{2}\left(s\right)+2{\text{H}}_{3}{\text{O}}^{\text{+}}\left(aq\right)+{\text{2Br}}^{\text{−}}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{Mn}}^{2+}\left(aq\right)+{\text{2Br}}^{\text{−}}\left(aq\right)+4{\text{H}}_{2}\text{O}\left(l\right);$ (d) $\text{4Cr}\left(s\right)+3{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}2{\text{Cr}}_{2}{\text{O}}_{3}\left(s\right);$ (e) ${\text{Mn}}_{2}{\text{O}}_{3}\left(s\right)+6{\text{H}}_{3}{\text{O}}^{\text{+}}\left(aq\right)+{\text{6Cl}}^{\text{−}}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}2{\text{MnCl}}_{3}\left(s\right)+9{\text{H}}_{2}\text{O}\left(l\right);$ (f) $\text{Ti}\left(s\right)+xs{\text{F}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{TiF}}_{4}\left(g\right)$

Describe the electrolytic process for refining copper.

Predict the products of the following reactions and balance the equations.

(a) Zn is added to a solution of Cr 2 (SO 4 ) 3 in acid.

(b) FeCl 2 is added to a solution containing an excess of ${\text{Cr}}_{2}{\text{O}}_{7}{}^{2-}$ in hydrochloric acid.

(c) Cr 2+ is added to ${\text{Cr}}_{2}{\text{O}}_{7}{}^{2-}$ in acid solution.

(d) Mn is heated with CrO 3 .

(e) CrO is added to 2HNO 3 in water.

(f) FeCl 3 is added to an aqueous solution of NaOH.

(a)
$\begin{array}{}\\ \\ {\text{Cr}}_{2}{\left({\text{SO}}_{4}\right)}_{3}\left(aq\right)+\text{2Zn}\left(s\right)+{\text{2H}}_{3}{\text{O}}^{\text{+}}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{2Zn}}^{2+}\left(aq\right)+{\text{H}}_{2}\left(g\right)+{\text{2H}}_{2}\text{O}\left(l\right)+{\text{2Cr}}^{2+}\left(aq\right)+{\text{3SO}}_{4}{}^{2-}\left(aq\right);\end{array}$ (b) ${\text{4TiCl}}_{3}\left(s\right)+{\text{CrO}}_{4}{}^{2-}\left(aq\right)+{\text{8H}}^{\text{+}}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{4Ti}}^{4+}\left(aq\right)+\text{Cr}\left(s\right)+{\text{4H}}_{2}\text{O}\left(l\right)+{\text{12Cl}}^{\text{−}}\left(aq\right);$ (c) In acid solution between pH 2 and pH 6, ${\text{CrO}}_{4}{}^{2-}$ forms ${\text{HCrO}}_{4}{}^{\text{−}},$ which is in equilibrium with dichromate ion. The reaction is ${\text{2HCrO}}_{4}{}^{\text{−}}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{Cr}}_{2}{\text{O}}_{7}{}^{2-}\left(aq\right)+{\text{H}}_{2}\text{O}\left(l\right).$ At other acidic pHs, the reaction is ${\text{3Cr}}^{2+}\left(aq\right)+{\text{CrO}}_{4}{}^{2-}\left(aq\right)+{\text{8H}}_{3}{\text{O}}^{\text{+}}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{4Cr}}^{3+}\left(aq\right)+{\text{12H}}_{2}\text{O}\left(l\right);$ (d) ${\text{8CrO}}_{3}\left(s\right)+\text{9Mn}\left(s\right)\phantom{\rule{0.2em}{0ex}}\stackrel{\text{Δ}}{⟶}\phantom{\rule{0.2em}{0ex}}{\text{4Cr}}_{2}{\text{O}}_{3}\left(s\right)+{\text{3Mn}}_{3}{\text{O}}_{4}\left(s\right);$ (e) $\text{CrO}\left(s\right)+{\text{2H}}_{3}{\text{O}}^{\text{+}}\left(aq\right)+{\text{2NO}}_{3}{}^{\text{−}}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{Cr}}^{2+}\left(aq\right)+{\text{2NO}}_{3}{}^{\text{−}}\left(aq\right)+{\text{3H}}_{2}\text{O}\left(l\right);$ (f) ${\text{CrCl}}_{3}\left(s\right)+\text{3NaOH}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}\text{Cr}{\left(\text{OH}\right)}_{3}\left(s\right)+{\text{3Na}}^{\text{+}}\left(aq\right)+{\text{3Cl}}^{\text{−}}\left(aq\right)$

What is the gas produced when iron(II) sulfide is treated with a nonoxidizing acid?

Predict the products of each of the following reactions and then balance the chemical equations.

(a) Fe is heated in an atmosphere of steam.

(b) NaOH is added to a solution of Fe(NO 3 ) 3 .

(c) FeSO 4 is added to an acidic solution of KMnO 4 .

(d) Fe is added to a dilute solution of H 2 SO 4 .

(e) A solution of Fe(NO 3 ) 2 and HNO 3 is allowed to stand in air.

(f) FeCO 3 is added to a solution of HClO 4 .

(g) Fe is heated in air.

(a) $\text{3Fe}\left(s\right)+{\text{4H}}_{2}\text{O}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{Fe}}_{3}{\text{O}}_{4}\left(s\right)+{\text{4H}}_{2}\left(g\right);$ (b) $\text{3NaOH}\left(aq\right)+\text{Fe}{\left({\text{NO}}_{3}\right)}_{3}\left(aq\right)\phantom{\rule{0.2em}{0ex}}\stackrel{\phantom{\rule{0.5em}{0ex}}{\text{H}}_{2}\text{O}\phantom{\rule{0.5em}{0ex}}}{\to }\phantom{\rule{0.2em}{0ex}}\text{Fe}{\left(\text{OH}\right)}_{3}\left(s\right)+{\text{3Na}}^{\text{+}}\left(aq\right)+3{\text{NO}}_{3}{}^{\text{−}}\left(aq\right);$ (c) $\begin{array}{}\\ \\ \\ \text{MnO}{}^{4-}+5\text{Fe}{\text{2+}}^{}+8\text{H}{\text{+}}^{}\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}\text{Mn}{}^{\text{2+}}+5{\text{Fe}}_{3}+4{\text{H}}_{2}\text{O}\end{array};$ (d) $\text{Fe}\left(s\right)+{\text{2H}}_{3}{\text{O}}^{\text{+}}\left(aq\right)+{\text{SO}}_{4}{}^{2-}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{Fe}}^{2+}\left(aq\right)+{\text{SO}}_{4}{}^{2-}\left(aq\right)+{\text{H}}_{2}\left(g\right)+{\text{2H}}_{2}\text{O}\left(l\right);$ (e) ${\text{4Fe}}^{2+}\left(aq\right)+{\text{O}}_{2}\left(g\right)+{\text{4HNO}}_{3}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{4Fe}}^{3+}\left(aq\right)+{\text{2H}}_{2}\text{O}\left(l\right)+{\text{4NO}}_{3}{}^{\text{−}}\left(aq\right);$ (f) ${\text{FeCO}}_{3}\left(s\right)+{\text{2HClO}}_{4}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}\text{Fe}{\left({\text{ClO}}_{4}\right)}_{2}\left(aq\right)+{\text{H}}_{2}\text{O}\left(l\right)+{\text{CO}}_{2}\left(g\right);$ (g) $\text{3Fe}\left(s\right)+{\text{2O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}\stackrel{\phantom{\rule{0.2em}{0ex}}\text{Δ}\phantom{\rule{0.2em}{0ex}}}{⟶}\phantom{\rule{0.2em}{0ex}}{\text{Fe}}_{3}{\text{O}}_{4}\left(s\right)$

Balance the following equations by oxidation-reduction methods; note that three elements change oxidation state.
$\text{Co}{\left({\text{NO}}_{3}\right)}_{2}\left(s\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{Co}}_{2}{\text{O}}_{3}\left(s\right)+{\text{NO}}_{2}\left(g\right)+{\text{O}}_{2}\left(g\right)$

Dilute sodium cyanide solution is slowly dripped into a slowly stirred silver nitrate solution. A white precipitate forms temporarily but dissolves as the addition of sodium cyanide continues. Use chemical equations to explain this observation. Silver cyanide is similar to silver chloride in its solubility.

${\text{Ag}}^{\text{+}}\left(aq\right)+{\text{CN}}^{\text{−}}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}\text{AgCN}\left(s\right)$
$\begin{array}{l}{\text{Ag}}^{\text{+}}\left(aq\right)+2{\text{CN}}^{\text{−}}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\left[\text{Ag}{\text{(CN)}}_{2}\right]}^{\text{−}}\left(aq\right)\\ \text{AgCN}\left(s\right)+{\text{CN}}^{\text{−}}\left(aq\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\left[\text{Ag}{\text{(CN)}}_{2}\right]}^{\text{−}}\left(aq\right)\end{array}$

Predict which will be more stable, [CrO 4 ] 2− or [WO 4 ] 2− , and explain.

Give the oxidation state of the metal for each of the following oxides of the first transition series. (Hint: Oxides of formula M 3 O 4 are examples of mixed valence compounds in which the metal ion is present in more than one oxidation state. It is possible to write these compound formulas in the equivalent format MO·M 2 O 3 , to permit estimation of the metal’s two oxidation states.)

(a) Sc 2 O 3

(b) TiO 2

(c) V 2 O 5

(d) CrO 3

(e) MnO 2

(f) Fe 3 O 4

(g) Co 3 O 4

(h) NiO

(i) Cu 2 O

(a) Sc 3+ ; (b) Ti 4+ ; (c) V 5+ ; (d) Cr 6+ ; (e) Mn 4+ ; (f) Fe 2+ and Fe 3+ ; (g) Co 2+ and Co 3+ ; (h) Ni 2+ ; (i) Cu +

mention some examples of ester
do you mean ether?
Megan
what do converging lines on a mass Spectra represent
would I do to help me know this topic ?
Bulus
oi
Amargo
what the physic?
who is albert heistein?
Bassidi
similarities between elements in the same group and period
what is the ratio of hydrogen to oxulygen in carbohydrates
bunubyyvyhinuvgtvbjnjnygtcrc
yvcrzezalakhhehuzhbshsunakakoaak
what is poh and ph
please what is the chemical configuration of sodium
Sharon
2.8.1
david
1s²2s²2p⁶3s¹
Haile
2, 6, 2, 1
Salman
1s2, 2s2, 2px2, 2py2, 2pz2, 3s1
Justice
1s2,2s2,2py2,2
Maryify
1s2,2s2,2p6,
Francis
1s2,2s2,2px2,2py2,2pz2,3s1
Nnyila
what is criteria purity
cathode is a negative ion why is it that u said is negative
cathode is a negative electrode while cation is a positive ion. cation move towards cathode plate.
king
CH3COOH +NaOH ,complete the equation
compare and contrast the electrical conductivity of HCl and CH3cooH
The must be in dissolved in water (aqueous). Electrical conductivity is measured in Siemens (s). HCl (aq) has higher conductivity, as it fully ionises (small portion of CH3COOH (aq) ionises) when dissolved in water. Thus, more free ions to carry charge.
Abdelkarim
HCl being an strong acid will fully ionize in water thus producing more mobile ions for electrical conduction than the carboxylic acid
Valentine
differiante between a weak and a strong acid
david
how can I tell when an acid is weak or Strong
Amarachi
an aqueous solution of copper sulphate was electrolysed between graphite electrodes. state what was observed at the cathode
write the equation for the reaction that took place at the anode
Bakanya
what is enthalpy of combustion
Bakanya
Enthalpy change of combustion: It is the enthalpy change when 1 mole of substance is combusted with excess oxygen under standard conditions. Elements are in their standard states. Conditions: pressure = 1 atm Temperature =25°C
Abdelkarim
Observation at Cathode: Cu metal deposit (pink/red solid).
Abdelkarim
Equation at Anode: (SO4)^2- + 4H^+ + 2e^- __> SO2 + 2H2O
Abdelkarim
Equation : CuSO4 -> Cu^2+ + SO4^2- equation at katode: 2Cu^2+ + 4e -> 2Cu equation at anode: 2H2O -> 4H+ + O2 +4e at the anode which reacts is water because SO4 ^ 2- cannot be electrolyzed in the anode
Niken
what is the electrolysis of sulphuric acid
why is electrolysis difficult using solid lead chloride
Bakanya
what is heat formation
what are atoms
this are small substances that form together and complained one
Belvine
okay gud
Bol
what's covalent bonding
Covalent bonds are characterized by the sharing of electrons between two or more atoms. These bonds mostly occur between nonmetals or between two of the same (or similar) elements.
Haile
covalent bonding is the mutual sharing of electrons between two element in a molecule, usually it involves non metals as they are less ionic and more electronegative than metals( ionic). and these bonds have high enthalpy of formation. and are strong bonds than most of the bond.
Chiranjeev
covalent bonding involves both nonmetals where there is complete sharing of electrons on the outermost energy level
david
I don't understand
Belvine