<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Derive reaction quotients from chemical equations representing homogeneous and heterogeneous reactions
  • Calculate values of reaction quotients and equilibrium constants, using concentrations and pressures
  • Relate the magnitude of an equilibrium constant to properties of the chemical system

Now that we have a symbol (⇌) to designate reversible reactions, we will need a way to express mathematically how the amounts of reactants and products affect the equilibrium of the system. A general equation for a reversible reaction may be written as follows:

m A + n B + x C + y D

We can write the reaction quotient ( Q )    for this equation. When evaluated using concentrations, it is called Q c . We use brackets to indicate molar concentrations of reactants and products.

Q c = [ C ] x [ D ] y [ A ] m [ B ] n

The reaction quotient is equal to the molar concentrations of the products of the chemical equation (multiplied together) over the reactants (also multiplied together), with each concentration raised to the power of the coefficient of that substance in the balanced chemical equation. For example, the reaction quotient for the reversible reaction 2 NO 2 ( g ) N 2 O 4 ( g ) is given by this expression:

Q c = [ N 2 O 4 ] [ NO 2 ] 2

Writing reaction quotient expressions

Write the expression for the reaction quotient for each of the following reactions:

(a) 3 O 2 ( g ) 2 O 3 ( g )

(b) N 2 ( g ) + 3 H 2 ( g ) 2 NH 3 ( g )

(c) 4 NH 3 ( g ) + 7 O 2 ( g ) 4 NO 2 ( g ) + 6 H 2 O ( g )

Solution

(a) Q c = [ O 3 ] 2 [ O 2 ] 3

(b) Q c = [ NH 3 ] 2 [ N 2 ] [ H 2 ] 3

(c) Q c = [ NO 2 ] 4 [ H 2 O ] 6 [ NH 3 ] 4 [ O 2 ] 7

Check your learning

Write the expression for the reaction quotient for each of the following reactions:

(a) 2 SO 2 ( g ) + O 2 ( g ) 2 SO 3 ( g )

(b) C 4 H 8 ( g ) 2 C 2 H 4 ( g )

(c) 2 C 4 H 10 ( g ) + 13 O 2 ( g ) 8 CO 2 ( g ) + 10 H 2 O ( g )

Answer:

(a) Q c = [ SO 3 ] 2 [ SO 2 ] 2 [ O 2 ] ; (b) Q c = [ C 2 H 4 ] 2 [ C 4 H 8 ] ; (c) Q c = [ CO 2 ] 8 [ H 2 O ] 10 [ C 4 H 10 ] 2 [ O 2 ] 13

Got questions? Get instant answers now!

The numeric value of Q c for a given reaction varies; it depends on the concentrations of products and reactants present at the time when Q c is determined. When pure reactants are mixed, Q c is initially zero because there are no products present at that point. As the reaction proceeds, the value of Q c increases as the concentrations of the products increase and the concentrations of the reactants simultaneously decrease ( [link] ). When the reaction reaches equilibrium, the value of the reaction quotient no longer changes because the concentrations no longer change.

Three graphs are shown and labeled, “a,” “b,” and “c.” All three graphs have a vertical dotted line running through the middle labeled, “Equilibrium is reached.” The y-axis on graph a is labeled, “Concentration,” and the x-axis is labeled, “Time.” Three curves are plotted on graph a. The first is labeled, “[ S O subscript 2 ];” this line starts high on the y-axis, ends midway down the y-axis, has a steep initial slope and a more gradual slope as it approaches the far right on the x-axis. The second curve on this graph is labeled, “[ O subscript 2 ];” this line mimics the first except that it starts and ends about fifty percent lower on the y-axis. The third curve is the inverse of the first in shape and is labeled, “[ S O subscript 3 ].” The y-axis on graph b is labeled, “Concentration,” and the x-axis is labeled, “Time.” Three curves are plotted on graph b. The first is labeled, “[ S O subscript 2 ];” this line starts low on the y-axis, ends midway up the y-axis, has a steep initial slope and a more gradual slope as it approaches the far right on the x-axis. The second curve on this graph is labeled, “[ O subscript 2 ];” this line mimics the first except that it ends about fifty percent lower on the y-axis. The third curve is the inverse of the first in shape and is labeled, “[ S O subscript 3 ].” The y-axis on graph c is labeled, “Reaction Quotient,” and the x-axis is labeled, “Time.” A single curve is plotted on graph c. This curve begins at the bottom of the y-axis and rises steeply up near the top of the y-axis, then levels off into a horizontal line. The top point of this line is labeled, “k.”
(a) The change in the concentrations of reactants and products is depicted as the 2 SO 2 ( g ) + O 2 ( g ) 2 SO 3 ( g ) reaction approaches equilibrium. (b) The change in concentrations of reactants and products is depicted as the reaction 2 SO 3 ( g ) 2 SO 2 ( g ) + O 2 ( g ) approaches equilibrium. (c) The graph shows the change in the value of the reaction quotient as the reaction approaches equilibrium.

When a mixture of reactants and products of a reaction reaches equilibrium at a given temperature, its reaction quotient always has the same value. This value is called the equilibrium constant ( K )    of the reaction at that temperature. As for the reaction quotient, when evaluated in terms of concentrations, it is noted as K c .

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask