<< Chapter < Page Chapter >> Page >
Three pairs of images are shown. The first three images are in a row and are labeled “Lattice point locations” while the second three images are in a row labeled “Cubic unit cells.” The first image in the top row shows a cube with black dots at each corner while the first image in the second row is composed of eight spheres that are stacked together to form a cube and dots at the center of each sphere are connected to form a cube shape. The name under this image reads “Simple cubic.” The second image in the top row shows a cube with black dots at each corner and a red dot in the center while the second image in the second row is composed of eight spheres that are stacked together to form a cube with one sphere in the center of the cube and dots at the center of each corner sphere connected to form a cube shape. The name under this image reads “Body-centered cubic.” The third image in the top row shows a cube with black dots at each corner and red dots in the center of each face while the third image in the second row is composed of eight spheres that are stacked together to form a cube with six more spheres located in the center of each face of the cube. Dots at the center of each corner sphere are connected to form a cube shape. The name under this image reads “Face-centered cubic.”
Cubic unit cells of metals show (in the upper figures) the locations of lattice points and (in the lower figures) metal atoms located in the unit cell.

Some metals crystallize in an arrangement that has a cubic unit cell with atoms at all of the corners and an atom in the center, as shown in [link] . This is called a body-centered cubic (BCC) solid    . Atoms in the corners of a BCC unit cell do not contact each other but contact the atom in the center. A BCC unit cell contains two atoms: one-eighth of an atom at each of the eight corners ( 8 × 1 8 = 1 atom from the corners) plus one atom from the center. Any atom in this structure touches four atoms in the layer above it and four atoms in the layer below it. Thus, an atom in a BCC structure has a coordination number of eight.

Three images are shown. The first image shows a cube with black dots at each corner and a red dot in the center while the second image is composed of eight spheres that are stacked together to form a cube with one sphere in the center of the cube and dots at the center of each corner sphere connected to form a cube shape.  The name under this image reads “Body-centered cubic structure.” The third image is the same as the second, but only shows the portions of the spheres that lie inside the cube shape.
In a body-centered cubic structure, atoms in a specific layer do not touch each other. Each atom touches four atoms in the layer above it and four atoms in the layer below it.

Atoms in BCC arrangements are much more efficiently packed than in a simple cubic structure, occupying about 68% of the total volume. Isomorphous metals with a BCC structure include K, Ba, Cr, Mo, W, and Fe at room temperature. (Elements or compounds that crystallize with the same structure are said to be isomorphous    .)

Many other metals, such as aluminum, copper, and lead, crystallize in an arrangement that has a cubic unit cell with atoms at all of the corners and at the centers of each face, as illustrated in [link] . This arrangement is called a face-centered cubic (FCC) solid    . A FCC unit cell contains four atoms: one-eighth of an atom at each of the eight corners ( 8 × 1 8 = 1 atom from the corners) and one-half of an atom on each of the six faces ( 6 × 1 2 = 3 atoms from the faces). The atoms at the corners touch the atoms in the centers of the adjacent faces along the face diagonals of the cube. Because the atoms are on identical lattice points, they have identical environments.

Three images are shown. The first image shows a cube with black dots at each corner and red dots in the center of each face of the cube while the second image is composed of eight spheres that are stacked together to form a cube with six more spheres, one located on each face of the structure. Dots at the center of each corner sphere are connected to form a cube shape. The name under this image reads “Face-centered cubic structure.” The third image is the same as the second, but only shows the portions of the spheres that lie inside the cube shape.
A face-centered cubic solid has atoms at the corners and, as the name implies, at the centers of the faces of its unit cells.

Atoms in an FCC arrangement are packed as closely together as possible, with atoms occupying 74% of the volume. This structure is also called cubic closest packing (CCP)    . In CCP, there are three repeating layers of hexagonally arranged atoms. Each atom contacts six atoms in its own layer, three in the layer above, and three in the layer below. In this arrangement, each atom touches 12 near neighbors, and therefore has a coordination number of 12. The fact that FCC and CCP arrangements are equivalent may not be immediately obvious, but why they are actually the same structure is illustrated in [link] .

Three images are shown. In the first image, a side view shows a layer of blue spheres, labeled “C” stacked on top of, and sitting in between the gaps in a second layer that is composed of green spheres, labeled “B,” which are sitting atop a purple layer of spheres labeled “A.” A label below this image reads “Side view.” The second image shows a top view of the same layers of spheres, where the top layer is “C,” the second layer is “B” and the lowest layer is “C.” This image is labeled “Top view” and written under this is the phrase “Cubic closest packed structure.” The third image shows an upper view of the side of a cube composed of two sets of the repeating layers shown in the other images. The layers are arranged “C, B, A, C, B, A, C” and the phrase written under this image reads “Rotated view.”
A CCP arrangement consists of three repeating layers (ABCABC…) of hexagonally arranged atoms. Atoms in a CCP structure have a coordination number of 12 because they contact six atoms in their layer, plus three atoms in the layer above and three atoms in the layer below. By rotating our perspective, we can see that a CCP structure has a unit cell with a face containing an atom from layer A at one corner, atoms from layer B across a diagonal (at two corners and in the middle of the face), and an atom from layer C at the remaining corner. This is the same as a face-centered cubic arrangement.

Questions & Answers

What is whizatron?
Frendick Reply
What is stoichometry
ngwuebo Reply
what is atom
yinka Reply
An indivisible part of an element
ngwuebo
the smallest particle of an element which is indivisible is called an atom
Aloaye
An atom is the smallest indivisible particle of an element that can take part in chemical reaction
Alieu
is carbonates soluble
Ebuka Reply
what is the difference between light and electricity
Joshua Reply
What is atom? atom can be defined as the smallest particles
Adazion
what is the difference between Anode and nodes?
Adazion
What's the net equations for the three steps of dissociation of phosphoric acid?
Lisa Reply
what is chemistry
Prince Reply
the study of matter
Reginald
what did the first law of thermodynamics say
Starr Reply
energy can neither be created or distroyed it can only be transferred or converted from one form to another
Adedeji
Graham's law of Diffusion
Ayo Reply
what is melting vaporization
Anieke Reply
melting and boiling point explain in term of molecular motion and Brownian movement
Anieke
Scientific notation for 150.9433962
Steve Reply
what is aromaticity
Usman Reply
aromaticity is a conjugated pi system specific to organic rings like benzene, which have an odd number of electron pairs within the system that allows for exceptional molecular stability
Pookieman
what is caustic soda
Ogbonna Reply
sodium hydroxide (NaOH)
Kamaluddeen
what is distilled water
Rihanat
is simply means a condensed water vapour
Kamaluddeen
advantage and disadvantage of water to human and industry
Abdulrahman Reply
a hydrocarbon contains 7.7 percent by mass of hydrogen and 92.3 percent by mass of carbon
Timothy Reply

Get the best Chemistry course in your pocket!





Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask