# 1.5 Exponential and logarithmic functions  (Page 2/17)

 Page 2 / 17
 $\mathbit{\text{x}}$ $1.4$ $1.41$ $1.414$ $1.4142$ $1.41421$ $1.414213$ ${\mathbf{2}}^{\mathbit{\text{x}}}$ $2.639$ $2.65737$ $2.66475$ $2.665119$ $2.665138$ $2.665143$

## Bacterial growth

Suppose a particular population of bacteria is known to double in size every $4$ hours. If a culture starts with $1000$ bacteria, the number of bacteria after $4$ hours is $n\left(4\right)=1000·2.$ The number of bacteria after $8$ hours is $n\left(8\right)=n\left(4\right)·2=1000·{2}^{2}.$ In general, the number of bacteria after $4m$ hours is $n\left(4m\right)=1000·{2}^{m}.$ Letting $t=4m,$ we see that the number of bacteria after $t$ hours is $n\left(t\right)=1000·{2}^{t\text{/}4}.$ Find the number of bacteria after $6$ hours, $10$ hours, and $24$ hours.

The number of bacteria after 6 hours is given by $n\left(6\right)=1000·{2}^{6\text{/}4}\approx 2828$ bacteria. The number of bacteria after $10$ hours is given by $n\left(10\right)=1000·{2}^{10\text{/}4}\approx 5657$ bacteria. The number of bacteria after $24$ hours is given by $n\left(24\right)=1000·{2}^{6}=64,000$ bacteria.

Given the exponential function $f\left(x\right)=100·{3}^{x\text{/}2},$ evaluate $f\left(4\right)$ and $f\left(10\right).$

$f\left(4\right)=900;f\left(10\right)=24,300.$

Go to World Population Balance for another example of exponential population growth.

## Graphing exponential functions

For any base $b>0,b\ne 1,$ the exponential function $f\left(x\right)={b}^{x}$ is defined for all real numbers $x$ and ${b}^{x}>0.$ Therefore, the domain of $f\left(x\right)={b}^{x}$ is $\left(\text{−}\infty ,\infty \right)$ and the range is $\left(0,\infty \right).$ To graph ${b}^{x},$ we note that for $b>1,{b}^{x}$ is increasing on $\left(\text{−}\infty ,\infty \right)$ and ${b}^{x}\to \infty$ as $x\to \infty ,$ whereas ${b}^{x}\to 0$ as $x\to \text{−}\infty .$ On the other hand, if $0 is decreasing on $\left(\text{−}\infty ,\infty \right)$ and ${b}^{x}\to 0$ as $x\to \infty$ whereas ${b}^{x}\to \infty$ as $x\to \text{−}\infty$ ( [link] ). If b > 1 , then b x is increasing on ( − ∞ , ∞ ) . If 0 < b < 1 , then b x is decreasing on ( − ∞ , ∞ ) .

Visit this site for more exploration of the graphs of exponential functions.

Note that exponential functions satisfy the general laws of exponents. To remind you of these laws, we state them as rules.

## Rule: laws of exponents

For any constants $a>0,b>0,$ and for all x and y ,

1. ${b}^{x}·{b}^{y}={b}^{x+y}$
2. $\frac{{b}^{x}}{{b}^{y}}={b}^{x-y}$
3. ${\left({b}^{x}\right)}^{y}={b}^{xy}$
4. ${\left(ab\right)}^{x}={a}^{x}{b}^{x}$
5. $\frac{{a}^{x}}{{b}^{x}}={\left(\frac{a}{b}\right)}^{x}$

## Using the laws of exponents

Use the laws of exponents to simplify each of the following expressions.

1. $\frac{{\left(2{x}^{2\text{/}3}\right)}^{3}}{{\left(4{x}^{-1\text{/}3}\right)}^{2}}$
2. $\frac{{\left({x}^{3}{y}^{-1}\right)}^{2}}{{\left(x{y}^{2}\right)}^{-2}}$
1. We can simplify as follows:
$\frac{{\left(2{x}^{2\text{/}3}\right)}^{3}}{{\left(4{x}^{-1\text{/}3}\right)}^{2}}=\frac{{2}^{3}{\left({x}^{2\text{/}3}\right)}^{3}}{{4}^{2}{\left({x}^{-1\text{/}3}\right)}^{2}}=\frac{8{x}^{2}}{16{x}^{-2\text{/}3}}=\frac{{x}^{2}{x}^{2\text{/}3}}{2}=\frac{{x}^{8\text{/}3}}{2}.$
2. We can simplify as follows:
$\frac{{\left({x}^{3}{y}^{-1}\right)}^{2}}{{\left(x{y}^{2}\right)}^{-2}}=\frac{{\left({x}^{3}\right)}^{2}{\left({y}^{-1}\right)}^{2}}{{x}^{-2}{\left({y}^{2}\right)}^{-2}}=\frac{{x}^{6}{y}^{-2}}{{x}^{-2}{y}^{-4}}={x}^{6}{x}^{2}{y}^{-2}{y}^{4}={x}^{8}{y}^{2}.$

Use the laws of exponents to simplify $\left(6{x}^{-3}{y}^{2}\right)\text{/}\left(12{x}^{-4}{y}^{5}\right).$

$x\text{/}\left(2{y}^{3}\right)$

## The number e

A special type of exponential function appears frequently in real-world applications. To describe it, consider the following example of exponential growth, which arises from compounding interest in a savings account. Suppose a person invests $P$ dollars in a savings account with an annual interest rate $r,$ compounded annually. The amount of money after 1 year is

$A\left(1\right)=P+rP=P\left(1+r\right).$

The amount of money after $2$ years is

$A\left(2\right)=A\left(1\right)+rA\left(1\right)=P\left(1+r\right)+rP\left(1+r\right)=P{\left(1+r\right)}^{2}.$

More generally, the amount after $t$ years is

$A\left(t\right)=P{\left(1+r\right)}^{t}.$

If the money is compounded 2 times per year, the amount of money after half a year is

$A\left(\frac{1}{2}\right)=P+\left(\frac{r}{2}\right)P=P\left(1+\left(\frac{r}{2}\right)\right).$

The amount of money after $1$ year is

$A\left(1\right)=A\left(\frac{1}{2}\right)+\left(\frac{r}{2}\right)A\left(\frac{1}{2}\right)=P\left(1+\frac{r}{2}\right)+\frac{r}{2}\left(P\left(1+\frac{r}{2}\right)\right)=P{\left(1+\frac{r}{2}\right)}^{2}.$

After $t$ years, the amount of money in the account is

$A\left(t\right)=P{\left(1+\frac{r}{2}\right)}^{2t}.$

More generally, if the money is compounded $n$ times per year, the amount of money in the account after $t$ years is given by the function

how can we scatch a parabola graph
Ok
Endalkachew
how can I solve differentiation?
with the help of different formulas and Rules. we use formulas according to given condition or according to questions
CALCULUS
For example any questions...
CALCULUS
what is the procedures in solving number 1?
review of funtion role?
for the function f(x)={x^2-7x+104 x<=7 7x+55 x>7' does limx7 f(x) exist?
find dy÷dx (y^2+2 sec)^2=4(x+1)^2
Integral of e^x/(1+e^2x)tan^-1 (e^x)
why might we use the shell method instead of slicing
fg[[(45)]]²+45⅓x²=100
find the values of c such that the graph of f(x)=x^4+2x^3+cx^2+2x+2
anyone to explain some basic in calculus
A conical container of radius 10 ft and height 30 ft is filled with water to a depth of 15 ft. How much work is required to pump all the water out through a hole in the top of the container if the unit weight of the water is 62.4 lb/ft^3?
hi am new here I really wants to know how the solve calculus
IBRAHIM
me too. I want to know calculation involved in calculus.
Katiba
evaluate triple integral xyz dx dy dz where the domain v is bounded by the plane x+y+z=a and the co-ordinate planes
So how can this question be solved
Eddy
i m not sure but it could be xyz/2
Leo
someone should explain with a photo shot of the working pls
I think we should sort it out.
Eunice
Eunice Toe you can try it if you have the idea
how
Eunice
a^6÷8
Muzamil
i think a^6 ÷ 8
Muzamil
maxima and minima problem in log form
find Maxima and minima of 4^x - 8xlog2
Roshan
(x-1)4^(x-1) - 8log2 4^(x - 1) x - 4^(x - 1) - 8 log(2) -1 to 3 or -11 to 13.
James
thanks
Roshan
The f'(4)for f(x) =4^x By Richley Crapo By Rhodes By OpenStax By Edgar Delgado By Robert Morris By OpenStax By OpenStax By Saylor Foundation By OpenStax By OpenStax