# 4.8 L’hôpital’s rule  (Page 2/7)

 Page 2 / 7

## Proof

We provide a proof of this theorem in the special case when $f,g,{f}^{\prime },$ and ${g}^{\prime }$ are all continuous over an open interval containing $a.$ In that case, since $\underset{x\to a}{\text{lim}}f\left(x\right)=0=\underset{x\to a}{\text{lim}}g\left(x\right)$ and $f$ and $g$ are continuous at $a,$ it follows that $f\left(a\right)=0=g\left(a\right).$ Therefore,

$\begin{array}{ccccc}\hfill \underset{x\to a}{\text{lim}}\frac{f\left(x\right)}{g\left(x\right)}& =\underset{x\to a}{\text{lim}}\frac{f\left(x\right)-f\left(a\right)}{g\left(x\right)-g\left(a\right)}\hfill & & & \text{since}\phantom{\rule{0.2em}{0ex}}f\left(a\right)=0=g\left(a\right)\hfill \\ & =\underset{x\to a}{\text{lim}}\frac{\frac{f\left(x\right)-f\left(a\right)}{x-a}}{\frac{g\left(x\right)-g\left(a\right)}{x-a}}\hfill & & & \text{algebra}\hfill \\ & =\frac{\underset{x\to a}{\text{lim}}\frac{f\left(x\right)-f\left(a\right)}{x-a}}{\underset{x\to a}{\text{lim}}\frac{g\left(x\right)-g\left(a\right)}{x-a}}\hfill & & & \text{limit of a quotient}\hfill \\ & =\frac{{f}^{\prime }\left(a\right)}{{g}^{\prime }\left(a\right)}\hfill & & & \text{definition of the derivative}\hfill \\ & =\frac{\underset{x\to a}{\text{lim}}{f}^{\prime }\left(x\right)}{\underset{x\to a}{\text{lim}}{g}^{\prime }\left(x\right)}\hfill & & & \text{continuity of}\phantom{\rule{0.2em}{0ex}}{f}^{\prime }\phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}{g}^{\prime }\hfill \\ & =\underset{x\to a}{\text{lim}}\frac{{f}^{\prime }\left(x\right)}{{g}^{\prime }\left(x\right)}.\hfill & & & \text{limit of a quotient}\hfill \end{array}$

Note that L’Hôpital’s rule states we can calculate the limit of a quotient $\frac{f}{g}$ by considering the limit of the quotient of the derivatives $\frac{{f}^{\prime }}{{g}^{\prime }}.$ It is important to realize that we are not calculating the derivative of the quotient $\frac{f}{g}.$

## Applying l’hôpital’s rule (0/0 case)

Evaluate each of the following limits by applying L’Hôpital’s rule.

1. $\underset{x\to 0}{\text{lim}}\frac{1-\text{cos}\phantom{\rule{0.1em}{0ex}}x}{x}$
2. $\underset{x\to 1}{\text{lim}}\frac{\text{sin}\left(\pi x\right)}{\text{ln}\phantom{\rule{0.1em}{0ex}}x}$
3. $\underset{x\to \infty }{\text{lim}}\frac{{e}^{1\text{/}x}-1}{1\text{/}x}$
4. $\underset{x\to 0}{\text{lim}}\frac{\text{sin}\phantom{\rule{0.1em}{0ex}}x-x}{{x}^{2}}$
1. Since the numerator $1-\text{cos}\phantom{\rule{0.1em}{0ex}}x\to 0$ and the denominator $x\to 0,$ we can apply L’Hôpital’s rule to evaluate this limit. We have
$\begin{array}{cc}\hfill \underset{x\to 0}{\text{lim}}\frac{1-\text{cos}\phantom{\rule{0.1em}{0ex}}x}{x}& =\underset{x\to 0}{\text{lim}}\frac{\frac{d}{dx}\left(1-\text{cos}\phantom{\rule{0.1em}{0ex}}x\right)}{\frac{d}{dx}\left(x\right)}\hfill \\ & =\underset{x\to 0}{\text{lim}}\frac{\text{sin}\phantom{\rule{0.1em}{0ex}}x}{1}\hfill \\ & =\frac{\underset{x\to 0}{\text{lim}}\left(\text{sin}\phantom{\rule{0.1em}{0ex}}x\right)}{\underset{x\to 0}{\text{lim}}\left(1\right)}\hfill \\ & =\frac{0}{1}=0.\hfill \end{array}$
2. As $x\to 1,$ the numerator $\text{sin}\left(\pi x\right)\to 0$ and the denominator $\text{ln}\left(x\right)\to 0.$ Therefore, we can apply L’Hôpital’s rule. We obtain
$\begin{array}{cc}\hfill \underset{x\to 1}{\text{lim}}\frac{\text{sin}\left(\pi x\right)}{\text{ln}\phantom{\rule{0.1em}{0ex}}x}& =\underset{x\to 1}{\text{lim}}\frac{\pi \phantom{\rule{0.1em}{0ex}}\text{cos}\left(\pi x\right)}{1\text{/}x}\hfill \\ & =\underset{x\to 1}{\text{lim}}\left(\pi x\right)\text{cos}\left(\pi x\right)\hfill \\ & =\left(\pi ·1\right)\left(-1\right)=\text{−}\pi .\hfill \end{array}$
3. As $x\to \infty ,$ the numerator ${e}^{1\text{/}x}-1\to 0$ and the denominator $\left(\frac{1}{x}\right)\to 0.$ Therefore, we can apply L’Hôpital’s rule. We obtain
$\underset{x\to \infty }{\text{lim}}\frac{{e}^{1\text{/}x}-1}{\frac{1}{x}}=\underset{x\to \infty }{\text{lim}}\frac{{e}^{1\text{/}x}\left(\frac{-1}{{x}^{2}}\right)}{\left(\frac{-1}{{x}^{2}}\right)}=\underset{x\to \infty }{\text{lim}}{e}^{1\text{/}x}={e}^{0}=1·\underset{x\to \infty }{\text{lim}}\frac{{e}^{1\text{/}x}-1}{\text{ln}\phantom{\rule{0.1em}{0ex}}x}.$
4. As $x\to 0,$ both the numerator and denominator approach zero. Therefore, we can apply L’Hôpital’s rule. We obtain
$\underset{x\to 0}{\text{lim}}\frac{\text{sin}\phantom{\rule{0.1em}{0ex}}x-x}{{x}^{2}}=\underset{x\to 0}{\text{lim}}\frac{\text{cos}\phantom{\rule{0.1em}{0ex}}x-1}{2x}.$

Since the numerator and denominator of this new quotient both approach zero as $x\to 0,$ we apply L’Hôpital’s rule again. In doing so, we see that
$\underset{x\to 0}{\text{lim}}\frac{\text{cos}\phantom{\rule{0.1em}{0ex}}x-1}{2x}=\underset{x\to 0}{\text{lim}}\frac{\text{−}\text{sin}\phantom{\rule{0.1em}{0ex}}x}{2}=0.$

Therefore, we conclude that
$\underset{x\to 0}{\text{lim}}\frac{\text{sin}\phantom{\rule{0.1em}{0ex}}x-x}{{x}^{2}}=0.$

Evaluate $\underset{x\to 0}{\text{lim}}\frac{x}{\text{tan}\phantom{\rule{0.1em}{0ex}}x}.$

$1$

We can also use L’Hôpital’s rule to evaluate limits of quotients $\frac{f\left(x\right)}{g\left(x\right)}$ in which $f\left(x\right)\to \text{±}\infty$ and $g\left(x\right)\to \text{±}\infty .$ Limits of this form are classified as indeterminate forms of type $\infty \text{/}\infty .$ Again, note that we are not actually dividing $\infty$ by $\infty .$ Since $\infty$ is not a real number, that is impossible; rather, $\infty \text{/}\infty .$ is used to represent a quotient of limits, each of which is $\infty$ or $\text{−}\infty .$

## L’hôpital’s rule $\left(\infty \text{/}\infty$ Case)

Suppose $f$ and $g$ are differentiable functions over an open interval containing $a,$ except possibly at $a.$ Suppose $\underset{x\to a}{\text{lim}}f\left(x\right)=\infty$ (or $\text{−}\infty \right)$ and $\underset{x\to a}{\text{lim}}g\left(x\right)=\infty$ (or $\text{−}\infty \right).$ Then,

$\underset{x\to a}{\text{lim}}\frac{f\left(x\right)}{g\left(x\right)}=\underset{x\to a}{\text{lim}}\frac{{f}^{\prime }\left(x\right)}{{g}^{\prime }\left(x\right)},$

assuming the limit on the right exists or is $\infty$ or $\text{−}\infty .$ This result also holds if the limit is infinite, if $a=\infty$ or $\text{−}\infty ,$ or the limit is one-sided.

## Applying l’hôpital’s rule $\left(\infty \text{/}\infty$ Case)

Evaluate each of the following limits by applying L’Hôpital’s rule.

1. $\underset{x\to \infty }{\text{lim}}\frac{3x+5}{2x+1}$
2. $\underset{x\to {0}^{+}}{\text{lim}}\frac{\text{ln}\phantom{\rule{0.1em}{0ex}}x}{\text{cot}\phantom{\rule{0.1em}{0ex}}x}$
1. Since $3x+5$ and $2x+1$ are first-degree polynomials with positive leading coefficients, $\underset{x\to \infty }{\text{lim}}\left(3x+5\right)=\infty$ and $\underset{x\to \infty }{\text{lim}}\left(2x+1\right)=\infty .$ Therefore, we apply L’Hôpital’s rule and obtain
$\underset{x\to \infty }{\text{lim}}\frac{3x+5}{2x+1}=\underset{x\to \infty }{\text{lim}}\frac{3+5\text{/}x}{2x+1}=\underset{x\to \infty }{\text{lim}}\frac{3}{2}=\frac{3}{2}.$

Note that this limit can also be calculated without invoking L’Hôpital’s rule. Earlier in the chapter we showed how to evaluate such a limit by dividing the numerator and denominator by the highest power of $x$ in the denominator. In doing so, we saw that
$\underset{x\to \infty }{\text{lim}}\frac{3x+5}{2x+1}=\underset{x\to \infty }{\text{lim}}\frac{3+5\text{/}x}{2x+1}=\frac{3}{2}.$

L’Hôpital’s rule provides us with an alternative means of evaluating this type of limit.
2. Here, $\underset{x\to {0}^{+}}{\text{lim}}\text{ln}\phantom{\rule{0.1em}{0ex}}x=\text{−}\infty$ and $\underset{x\to {0}^{+}}{\text{lim}}\text{cot}\phantom{\rule{0.1em}{0ex}}x=\infty .$ Therefore, we can apply L’Hôpital’s rule and obtain
$\underset{x\to {0}^{+}}{\text{lim}}\frac{\text{ln}\phantom{\rule{0.1em}{0ex}}x}{\text{cot}\phantom{\rule{0.1em}{0ex}}x}=\underset{x\to {0}^{+}}{\text{lim}}\frac{1\text{/}x}{\text{−}{\text{csc}}^{2}x}=\underset{x\to {0}^{+}}{\text{lim}}\frac{1}{\text{−}x\phantom{\rule{0.1em}{0ex}}{\text{csc}}^{2}x}.$

Now as $x\to {0}^{+},$ ${\text{csc}}^{2}x\to \infty .$ Therefore, the first term in the denominator is approaching zero and the second term is getting really large. In such a case, anything can happen with the product. Therefore, we cannot make any conclusion yet. To evaluate the limit, we use the definition of $\text{csc}\phantom{\rule{0.1em}{0ex}}x$ to write
$\underset{x\to {0}^{+}}{\text{lim}}\frac{1}{\text{−}x\phantom{\rule{0.1em}{0ex}}{\text{csc}}^{2}x}=\underset{x\to {0}^{+}}{\text{lim}}\frac{{\text{sin}}^{2}x}{\text{−}x}.$

Now $\underset{x\to {0}^{+}}{\text{lim}}{\text{sin}}^{2}x=0$ and $\underset{x\to {0}^{+}}{\text{lim}}x=0,$ so we apply L’Hôpital’s rule again. We find
$\underset{x\to {0}^{+}}{\text{lim}}\frac{{\text{sin}}^{2}x}{\text{−}x}=\underset{x\to {0}^{+}}{\text{lim}}\frac{2\phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}x\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}x}{-1}=\frac{0}{-1}=0.$

We conclude that
$\underset{x\to {0}^{+}}{\text{lim}}\frac{\text{ln}\phantom{\rule{0.1em}{0ex}}x}{\text{cot}\phantom{\rule{0.1em}{0ex}}x}=0.$

f(x) = x-2 g(x) = 3x + 5 fog(x)? f(x)/g(x)
fog(x)= f(g(x)) = x-2 = 3x+5-2 = 3x+3 f(x)/g(x)= x-2/3x+5
diron
pweding paturo nsa calculus?
jimmy
how to use fundamental theorem to solve exponential
find the bounded area of the parabola y^2=4x and y=16x
what is absolute value means?
Chicken nuggets
Hugh
🐔
MM
🐔🦃 nuggets
MM
(mathematics) For a complex number a+bi, the principal square root of the sum of the squares of its real and imaginary parts, √a2+b2 . Denoted by | |. The absolute value |x| of a real number x is √x2 , which is equal to x if x is non-negative, and −x if x is negative.
Ismael
find integration of loge x
find the volume of a solid about the y-axis, x=0, x=1, y=0, y=7+x^3
how does this work
Can calculus give the answers as same as other methods give in basic classes while solving the numericals?
log tan (x/4+x/2)
Rohan
Rohan
y=(x^2 + 3x).(eipix)
Claudia
Ismael
A Function F(X)=Sinx+cosx is odd or even?
neither
David
Neither
Lovuyiso
f(x)=1/1+x^2 |=[-3,1]
apa itu?
fauzi
determine the area of the region enclosed by x²+y=1,2x-y+4=0
Hi
MP
Hi too
Vic
hello please anyone with calculus PDF should share
Which kind of pdf do you want bro?
Aftab
hi
Abdul
can I get calculus in pdf
Abdul
explain for me
Usman
How to use it to slove fraction
Hello please can someone tell me the meaning of this group all about, yes I know is calculus group but yet nothing is showing up
Shodipo
You have downloaded the aplication Calculus Volume 1, tackling about lessons for (mostly) college freshmen, Calculus 1: Differential, and this group I think aims to let concerns and questions from students who want to clarify something about the subject. Well, this is what I guess so.
Jean
Im not in college but this will still help
nothing
how en where can u apply it
Migos
how can we scatch a parabola graph
Ok
Endalkachew
how can I solve differentiation?
with the help of different formulas and Rules. we use formulas according to given condition or according to questions
CALCULUS
For example any questions...
CALCULUS
v=(x,y) وu=(x,y ) ∂u/∂x* ∂x/∂u +∂v/∂x*∂x/∂v=1
log tan (x/4+x/2)
Rohan
what is the procedures in solving number 1? By Olivia D'Ambrogio By JavaChamp Team By OpenStax By OpenStax By OpenStax By OpenStax By Nicole Bartels By OpenStax By Cameron Casey By Caitlyn Gobble