<< Chapter < Page Chapter >> Page >

Apparently, the difference between “the same percentage” and “the same amount” is quite significant. For exponential growth, over equal increments, the constant multiplicative rate of change resulted in doubling the output whenever the input increased by one. For linear growth, the constant additive rate of change over equal increments resulted in adding 2 to the output whenever the input was increased by one.

The general form of the exponential function is f ( x ) = a b x , where a is any nonzero number, b is a positive real number not equal to 1.

  • If b > 1 , the function grows at a rate proportional to its size.
  • If 0 < b < 1 , the function decays at a rate proportional to its size.

Let’s look at the function f ( x ) = 2 x from our example. We will create a table ( [link] ) to determine the corresponding outputs over an interval in the domain from 3 to 3.

x 3 2 1 0 1 2 3
f ( x ) = 2 x 2 3 = 1 8 2 2 = 1 4 2 1 = 1 2 2 0 = 1 2 1 = 2 2 2 = 4 2 3 = 8

Let us examine the graph of f by plotting the ordered pairs we observe on the table in [link] , and then make a few observations.

Graph of Companies A and B’s functions, which values are found in the previous table.

Let’s define the behavior of the graph of the exponential function f ( x ) = 2 x and highlight some its key characteristics.

  • the domain is ( , ) ,
  • the range is ( 0 , ) ,
  • as x , f ( x ) ,
  • as x , f ( x ) 0 ,
  • f ( x ) is always increasing,
  • the graph of f ( x ) will never touch the x -axis because base two raised to any exponent never has the result of zero.
  • y = 0 is the horizontal asymptote.
  • the y -intercept is 1.

Exponential function

For any real number x , an exponential function is a function with the form

f ( x ) = a b x

where

  • a is the a non-zero real number called the initial value and
  • b is any positive real number such that b 1.
  • The domain of f is all real numbers.
  • The range of f is all positive real numbers if a > 0.
  • The range of f is all negative real numbers if a < 0.
  • The y -intercept is ( 0 , a ) , and the horizontal asymptote is y = 0.

Identifying exponential functions

Which of the following equations are not exponential functions?

  • f ( x ) = 4 3 ( x 2 )
  • g ( x ) = x 3
  • h ( x ) = ( 1 3 ) x
  • j ( x ) = ( 2 ) x

By definition, an exponential function has a constant as a base and an independent variable as an exponent. Thus, g ( x ) = x 3 does not represent an exponential function because the base is an independent variable. In fact, g ( x ) = x 3 is a power function.

Recall that the base b of an exponential function is always a positive constant, and b 1. Thus, j ( x ) = ( −2 ) x does not represent an exponential function because the base, −2 , is less than 0.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Which of the following equations represent exponential functions?

  • f ( x ) = 2 x 2 3 x + 1
  • g ( x ) = 0.875 x
  • h ( x ) = 1.75 x + 2
  • j ( x ) = 1095.6 2 x

g ( x ) = 0.875 x and j ( x ) = 1095.6 2 x represent exponential functions.

Got questions? Get instant answers now!

Evaluating exponential functions

Recall that the base of an exponential function must be a positive real number other than 1. Why do we limit the base b to positive values? To ensure that the outputs will be real numbers. Observe what happens if the base is not positive:

  • Let b = 9 and x = 1 2 . Then f ( x ) = f ( 1 2 ) = ( 9 ) 1 2 = 9 , which is not a real number.

Why do we limit the base to positive values other than 1 ? Because base 1 results in the constant function. Observe what happens if the base is 1 :

Questions & Answers

find the value of 2x=32
Felix Reply
divide by 2 on each side of the equal sign to solve for x
corri
X=16
Michael
Want to review on complex number 1.What are complex number 2.How to solve complex number problems.
Beyan
use the y -intercept and slope to sketch the graph of the equation y=6x
Only Reply
how do we prove the quadratic formular
Seidu Reply
hello, if you have a question about Algebra 2. I may be able to help. I am an Algebra 2 Teacher
Shirley Reply
thank you help me with how to prove the quadratic equation
Seidu
may God blessed u for that. Please I want u to help me in sets.
Opoku
what is math number
Tric Reply
4
Trista
x-2y+3z=-3 2x-y+z=7 -x+3y-z=6
Sidiki Reply
Need help solving this problem (2/7)^-2
Simone Reply
x+2y-z=7
Sidiki
what is the coefficient of -4×
Mehri Reply
-1
Shedrak
the operation * is x * y =x + y/ 1+(x × y) show if the operation is commutative if x × y is not equal to -1
Alfred Reply
An investment account was opened with an initial deposit of $9,600 and earns 7.4% interest, compounded continuously. How much will the account be worth after 15 years?
Kala Reply
lim x to infinity e^1-e^-1/log(1+x)
given eccentricity and a point find the equiation
Moses Reply
12, 17, 22.... 25th term
Alexandra Reply
12, 17, 22.... 25th term
Akash
College algebra is really hard?
Shirleen Reply
Absolutely, for me. My problems with math started in First grade...involving a nun Sister Anastasia, bad vision, talking & getting expelled from Catholic school. When it comes to math I just can't focus and all I can hear is our family silverware banging and clanging on the pink Formica table.
Carole
I'm 13 and I understand it great
AJ
I am 1 year old but I can do it! 1+1=2 proof very hard for me though.
Atone
Not really they are just easy concepts which can be understood if you have great basics. I am 14 I understood them easily.
Vedant
hi vedant can u help me with some assignments
Solomon
find the 15th term of the geometric sequince whose first is 18 and last term of 387
Jerwin Reply
I know this work
salma
Practice Key Terms 4

Get the best College algebra course in your pocket!





Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask