<< Chapter < Page Chapter >> Page >
  • Use the exponential growth model in applications, including population growth and compound interest.
  • Explain the concept of doubling time.
  • Use the exponential decay model in applications, including radioactive decay and Newton’s law of cooling.
  • Explain the concept of half-life.

One of the most prevalent applications of exponential functions involves growth and decay models. Exponential growth and decay show up in a host of natural applications. From population growth and continuously compounded interest to radioactive decay and Newton’s law of cooling, exponential functions are ubiquitous in nature. In this section, we examine exponential growth and decay in the context of some of these applications.

Exponential growth model

Many systems exhibit exponential growth. These systems follow a model of the form y = y 0 e k t , where y 0 represents the initial state of the system and k is a positive constant, called the growth constant . Notice that in an exponential growth model, we have

y = k y 0 e k t = k y .

That is, the rate of growth is proportional to the current function value. This is a key feature of exponential growth. [link] involves derivatives and is called a differential equation. We learn more about differential equations in Introduction to Differential Equations .

Rule: exponential growth model

Systems that exhibit exponential growth    increase according to the mathematical model

y = y 0 e k t ,

where y 0 represents the initial state of the system and k > 0 is a constant, called the growth constant .

Population growth is a common example of exponential growth. Consider a population of bacteria, for instance. It seems plausible that the rate of population growth would be proportional to the size of the population. After all, the more bacteria there are to reproduce, the faster the population grows. [link] and [link] represent the growth of a population of bacteria with an initial population of 200 bacteria and a growth constant of 0.02 . Notice that after only 2 hours ( 120 minutes), the population is 10 times its original size!

This figure is a graph. It is the exponential curve for y=200e^0.02t. It is in the first quadrant and an increasing function. It begins on the y-axis.
An example of exponential growth for bacteria.
Exponential growth of a bacterial population
Time (min) Population Size (no. of bacteria)
10 244
20 298
30 364
40 445
50 544
60 664
70 811
80 991
90 1210
100 1478
110 1805
120 2205

Note that we are using a continuous function to model what is inherently discrete behavior. At any given time, the real-world population contains a whole number of bacteria, although the model takes on noninteger values. When using exponential growth models, we must always be careful to interpret the function values in the context of the phenomenon we are modeling.

Population growth

Consider the population of bacteria described earlier. This population grows according to the function f ( t ) = 200 e 0.02 t , where t is measured in minutes. How many bacteria are present in the population after 5 hours ( 300 minutes)? When does the population reach 100,000 bacteria?

We have f ( t ) = 200 e 0.02 t . Then

f ( 300 ) = 200 e 0.02 ( 300 ) 80,686 .

There are 80,686 bacteria in the population after 5 hours.

To find when the population reaches 100,000 bacteria, we solve the equation

100,000 = 200 e 0.02 t 500 = e 0.02 t ln 500 = 0.02 t t = ln 500 0.02 310.73.

The population reaches 100,000 bacteria after 310.73 minutes.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

find the domain and range of f(x)= 4x-7/x²-6x+8
Nick Reply
find the range of f(x)=(x+1)(x+4)
Jane Reply
-1, -4
That's domain. The range is [-9/4,+infinity)
If you're using calculus to find the range, you have to find the extrema through the first derivative test and then substitute the x-value for the extrema back into the original equation.
Good morning,,, how are you
Harrieta Reply
d/dx{1/y - lny + X^3.Y^5}
mogomotsi Reply
How to identify domain and range
Umar Reply
I only talk to girls
women are smart then guys
hi adri ana
was up
is it chatting app?.. I do not see any calculus here. lol
Find the arc length of the graph of f(x) = In (sinx) on the interval [Π/4, Π/2].
mukul Reply
Sand falling freely from a lorry form a conical shape whose height is always equal to one-third the radius of the base. a. How fast is the volume increasing when the radius of the base is (1m) and increasing at the rate of 1/4cm/sec Pls help me solve
show that lim f(x) + lim g(x)=m+l
list the basic elementary differentials
Chio Reply
Differentiation and integration
Okikiola Reply
proper definition of derivative
Syed Reply
the maximum rate of change of one variable with respect to another variable
terms of an AP is 1/v and the vth term is 1/u show that the sum of uv terms is 1/2(uv+1)
Inembo Reply
what is calculus?
calculus is math that studies the change in math, such as the rate and distance,
what are the topics in calculus
what is limit of a function?
Geoffrey Reply
what is x and how x=9.1 take?
Pravin Reply
what is f(x)
Inembo Reply
the function at x
also known as the y value so I could say y=2x or f(x)= 2x same thing just using functional notation your next question is what is dependent and independent variables. I am Dyslexic but know math and which is which confuses me. but one can vary the x value while y depends on which x you use. also
up domain and range
enjoy your work and good luck
I actually wanted to ask another questions on sets if u dont mind please?
I have so many questions on set and I really love dis app I never believed u would reply
Hmm go ahead and ask you got me curious too much conversation here
am sorry for disturbing I really want to know math that's why *I want to know the meaning of those symbols in sets* e.g n,U,A', etc pls I want to know it and how to solve its problems
and how can i solve a question like dis *in a group of 40 students, 32 offer maths and 24 offer physics and 4 offer neither maths nor physics , how many offer both maths and physics*
next questions what do dy mean by (A' n B^c)^c'
The sets help you to define the function. The function is like a magic box where you put inside stuff(numbers or sets) and you get out the stuff but in different shapes (forms).
I dont understand what you wanna say by (A' n B^c)^c'
(A' n B (rise to the power of c)) all rise to the power of c
Ok so the set is formed by vectors and not numbers
A vector of length n
But you can make a set out of matrixes as well
I I don't even understand sets I wat to know d meaning of all d symbolsnon sets
Wait what's your math level?
am having big problem understanding sets more than other math topics
So f:R->R means that the function takes real numbers and provides real numer. For ex. If f(x) =2x this means if you give to your function a real number like 2,it gives you also a real number 2times2=4
pls answer this question *in a group of 40 students, 32 offer maths and 24 offer physics and 4 offer neither maths nor physics , how many offer both maths and physics*
If you have f:R^n->R^n you give to your function a vector of length n like (a1,a2,...an) where all a1,.. an are reals and gives you also a vector of length n... I don't know if i answering your question. Otherwise on YouTube you havr many videos where they explain it in a simple way
I would say 24
Offer both
Sorry 20
Actually you have 40 - 4 =36 who offer maths or physics or both.
I know its 20 but how to prove it
You have 32+24=56who offer courses
56-36=20 who give both courses... I would say that
solution: In a question involving sets and Venn diagram, the sum of the members of set A + set B - the joint members of both set A and B + the members that are not in sets A or B = the total members of the set. In symbolic form n(A U B) = n(A) + n (B) - n (A and B) + n (A U B)'.
In the case of sets A and B use the letters m and p to represent the sets and we have: n (M U P) = 40; n (M) = 24; n (P) = 32; n (M and P) = unknown; n (M U P)' = 4
Now substitute the numerical values for the symbolic representation 40 = 24 + 32 - n(M and P) + 4 Now solve for the unknown using algebra: 40 = 24 + 32+ 4 - n(M and P) 40 = 60 - n(M and P) Add n(M and P), as well, subtract 40 from both sides of the equation to find the answer.
40 - 40 + n(M and P) = 60 - 40 - n(M and P) + n(M and P) Solution: n(M and P) = 20
Simpler form: Add the sums of set M, set P and the complement of the union of sets M and P then subtract the number of students from the total.
n(M and P) = (32 + 24 + 4) - 40 = 60 - 40 = 20
Practice Key Terms 4

Get the best Calculus volume 1 course in your pocket!

Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?