<< Chapter < Page Chapter >> Page >
  • Determine the mass of a one-dimensional object from its linear density function.
  • Determine the mass of a two-dimensional circular object from its radial density function.
  • Calculate the work done by a variable force acting along a line.
  • Calculate the work done in pumping a liquid from one height to another.
  • Find the hydrostatic force against a submerged vertical plate.

In this section, we examine some physical applications of integration. Let’s begin with a look at calculating mass from a density function. We then turn our attention to work, and close the section with a study of hydrostatic force.

Mass and density

We can use integration to develop a formula for calculating mass based on a density function. First we consider a thin rod or wire. Orient the rod so it aligns with the x -axis, with the left end of the rod at x = a and the right end of the rod at x = b ( [link] ). Note that although we depict the rod with some thickness in the figures, for mathematical purposes we assume the rod is thin enough to be treated as a one-dimensional object.

This figure has the x and y axes. On the x-axis is a cylinder, beginning at x=a and ending at x=b.
We can calculate the mass of a thin rod oriented along the x -axis by integrating its density function.

If the rod has constant density ρ , given in terms of mass per unit length, then the mass of the rod is just the product of the density and the length of the rod: ( b a ) ρ . If the density of the rod is not constant, however, the problem becomes a little more challenging. When the density of the rod varies from point to point, we use a linear density function    , ρ ( x ) , to denote the density of the rod at any point, x . Let ρ ( x ) be an integrable linear density function. Now, for i = 0 , 1 , 2 ,… , n let P = { x i } be a regular partition of the interval [ a , b ] , and for i = 1 , 2 ,… , n choose an arbitrary point x i * [ x i 1 , x i ] . [link] shows a representative segment of the rod.

This figure has the x and y axes. On the x-axis is a cylinder, beginning at x=a and ending at x=b. The cylinder has been divided into segments. One segment in the middle begins at xsub(i-1) and ends at xsubi.
A representative segment of the rod.

The mass m i of the segment of the rod from x i 1 to x i is approximated by

m i ρ ( x i * ) ( x i x i 1 ) = ρ ( x i * ) Δ x .

Adding the masses of all the segments gives us an approximation for the mass of the entire rod:

m = i = 1 n m i i = 1 n ρ ( x i * ) Δ x .

This is a Riemann sum. Taking the limit as n , we get an expression for the exact mass of the rod:

m = lim n i = 1 n ρ ( x i * ) Δ x = a b ρ ( x ) d x .

We state this result in the following theorem.

Mass–density formula of a one-dimensional object

Given a thin rod oriented along the x -axis over the interval [ a , b ] , let ρ ( x ) denote a linear density function giving the density of the rod at a point x in the interval. Then the mass of the rod is given by

m = a b ρ ( x ) d x .

We apply this theorem in the next example.

Calculating mass from linear density

Consider a thin rod oriented on the x -axis over the interval [ π / 2 , π ] . If the density of the rod is given by ρ ( x ) = sin x , what is the mass of the rod?

Applying [link] directly, we have

m = a b ρ ( x ) d x = π / 2 π sin x d x = cos x | π / 2 π = 1 .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Consider a thin rod oriented on the x -axis over the interval [ 1 , 3 ] . If the density of the rod is given by ρ ( x ) = 2 x 2 + 3 , what is the mass of the rod?

70 / 3

Got questions? Get instant answers now!

We now extend this concept to find the mass of a two-dimensional disk of radius r . As with the rod we looked at in the one-dimensional case, here we assume the disk is thin enough that, for mathematical purposes, we can treat it as a two-dimensional object. We assume the density is given in terms of mass per unit area (called area density ), and further assume the density varies only along the disk’s radius (called radial density ). We orient the disk in the x y -plane, with the center at the origin. Then, the density of the disk can be treated as a function of x , denoted ρ ( x ) . We assume ρ ( x ) is integrable. Because density is a function of x , we partition the interval from [ 0 , r ] along the x -axis . For i = 0 , 1 , 2 ,… , n , let P = { x i } be a regular partition of the interval [ 0 , r ] , and for i = 1 , 2 ,… , n , choose an arbitrary point x i * [ x i 1 , x i ] . Now, use the partition to break up the disk into thin (two-dimensional) washers. A disk and a representative washer are depicted in the following figure.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask