<< Chapter < Page Chapter >> Page >

The washer method

Some solids of revolution have cavities in the middle; they are not solid all the way to the axis of revolution. Sometimes, this is just a result of the way the region of revolution is shaped with respect to the axis of revolution. In other cases, cavities arise when the region of revolution is defined as the region between the graphs of two functions. A third way this can happen is when an axis of revolution other than the x -axis or y -axis is selected.

When the solid of revolution has a cavity in the middle, the slices used to approximate the volume are not disks, but washers (disks with holes in the center). For example, consider the region bounded above by the graph of the function f ( x ) = x and below by the graph of the function g ( x ) = 1 over the interval [ 1 , 4 ] . When this region is revolved around the x -axis, the result is a solid with a cavity in the middle, and the slices are washers. The graph of the function and a representative washer are shown in [link] (a) and (b). The region of revolution and the resulting solid are shown in [link] (c) and (d).

This figure has four graphs. The first graph is labeled “a” and has the two functions f(x)=squareroot(x) and g(x)=1 graphed in the first quadrant. f(x) is an increasing curve starting at the origin and g(x) is a horizontal line at y=1. The curves intersect at the ordered pair (1,1). In between the curves is a shaded rectangle with the bottom on g(x) and the top at f(x). The second graph labeled “b” is the same two curves as the first graph. The shaded rectangle between the curves from the first graph has been rotated around the x-axis to form an open disk or washer. The third graph labeled “a” has the same two curves as the first graph. There is a shaded region between the two curves between where they intersect and a line at x=4. The fourth graph is the same two curves as the first with the region from the third graph rotated around the x-axis forming a solid region with a hollow center. The hollow center is represented on the graph with broken horizontal lines at y=1 and y=-1.
(a) A thin rectangle in the region between two curves. (b) A representative disk formed by revolving the rectangle about the x -axis . (c) The region between the curves over the given interval. (d) The resulting solid of revolution.

The cross-sectional area, then, is the area of the outer circle less the area of the inner circle. In this case,

A ( x ) = π ( x ) 2 π ( 1 ) 2 = π ( x 1 ) .

Then the volume of the solid is

V = a b A ( x ) d x = 1 4 π ( x 1 ) d x = π [ x 2 2 x ] | 1 4 = 9 2 π units 3 .

Generalizing this process gives the washer method    .

Rule: the washer method

Suppose f ( x ) and g ( x ) are continuous, nonnegative functions such that f ( x ) g ( x ) over [ a , b ] . Let R denote the region bounded above by the graph of f ( x ) , below by the graph of g ( x ) , on the left by the line x = a , and on the right by the line x = b . Then, the volume of the solid of revolution formed by revolving R around the x -axis is given by

V = a b π [ ( f ( x ) ) 2 ( g ( x ) ) 2 ] d x .

Using the washer method

Find the volume of a solid of revolution formed by revolving the region bounded above by the graph of f ( x ) = x and below by the graph of g ( x ) = 1 / x over the interval [ 1 , 4 ] around the x -axis .

The graphs of the functions and the solid of revolution are shown in the following figure.

This figure has two graphs. The first graph is labeled “a” and has the two curves f(x)=x and g(x)=1/x. They are graphed only in the first quadrant. f(x) is a diagonal line starting at the origin and g(x) is a decreasing curve with the y-axis as a vertical asymptote and the x-axis as a horizontal asymptote. The graphs intersect at (1,1). There is a shaded region between the graphs, bounded to the right by a line at x=4. The second graph is the same two curves. There is a solid formed by rotating the shaded region from the first graph around the x-axis.
(a) The region between the graphs of the functions f ( x ) = x and g ( x ) = 1 / x over the interval [ 1 , 4 ] . (b) Revolving the region about the x -axis generates a solid of revolution with a cavity in the middle.

We have

V = a b π [ ( f ( x ) ) 2 ( g ( x ) ) 2 ] d x = π 1 4 [ x 2 ( 1 x ) 2 ] d x = π [ x 3 3 + 1 x ] | 1 4 = 81 π 4 units 3 .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the volume of a solid of revolution formed by revolving the region bounded by the graphs of f ( x ) = x and g ( x ) = 1 / x over the interval [ 1 , 3 ] around the x -axis .

10 π 3 units 3

Got questions? Get instant answers now!

As with the disk method, we can also apply the washer method to solids of revolution that result from revolving a region around the y -axis. In this case, the following rule applies.

Rule: the washer method for solids of revolution around the y -axis

Suppose u ( y ) and v ( y ) are continuous, nonnegative functions such that v ( y ) u ( y ) for y [ c , d ] . Let Q denote the region bounded on the right by the graph of u ( y ) , on the left by the graph of v ( y ) , below by the line y = c , and above by the line y = d . Then, the volume of the solid of revolution formed by revolving Q around the y -axis is given by

V = c d π [ ( u ( y ) ) 2 ( v ( y ) ) 2 ] d y .

Questions & Answers

how does this work
Brad Reply
Can calculus give the answers as same as other methods give in basic classes while solving the numericals?
Cosmos Reply
log tan (x/4+x/2)
Rohan
please answer
Rohan
y=(x^2 + 3x).(eipix)
Claudia
is this a answer
Ismael
A Function F(X)=Sinx+cosx is odd or even?
WIZARD Reply
neither
David
Neither
Lovuyiso
f(x)=1/1+x^2 |=[-3,1]
Yuliana Reply
apa itu?
fauzi
determine the area of the region enclosed by x²+y=1,2x-y+4=0
Gerald Reply
Hi
MP
Hi too
Vic
hello please anyone with calculus PDF should share
Adegoke
Which kind of pdf do you want bro?
Aftab
hi
Abdul
can I get calculus in pdf
Abdul
How to use it to slove fraction
Tricia Reply
Hello please can someone tell me the meaning of this group all about, yes I know is calculus group but yet nothing is showing up
Shodipo
You have downloaded the aplication Calculus Volume 1, tackling about lessons for (mostly) college freshmen, Calculus 1: Differential, and this group I think aims to let concerns and questions from students who want to clarify something about the subject. Well, this is what I guess so.
Jean
Im not in college but this will still help
nothing
how can we scatch a parabola graph
Dever Reply
Ok
Endalkachew
how can I solve differentiation?
Sir Reply
with the help of different formulas and Rules. we use formulas according to given condition or according to questions
CALCULUS
For example any questions...
CALCULUS
v=(x,y) وu=(x,y ) ∂u/∂x* ∂x/∂u +∂v/∂x*∂x/∂v=1
log tan (x/4+x/2)
Rohan
what is the procedures in solving number 1?
Vier Reply
review of funtion role?
Md Reply
for the function f(x)={x^2-7x+104 x<=7 7x+55 x>7' does limx7 f(x) exist?
find dy÷dx (y^2+2 sec)^2=4(x+1)^2
Rana Reply
Integral of e^x/(1+e^2x)tan^-1 (e^x)
naveen Reply
why might we use the shell method instead of slicing
Madni Reply
fg[[(45)]]²+45⅓x²=100
albert Reply
Practice Key Terms 5

Get the best Calculus volume 1 course in your pocket!





Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask