# 5.4 Integration formulas and the net change theorem  (Page 7/8)

 Page 7 / 8

For a given motor vehicle, the maximum achievable deceleration from braking is approximately 7 m/sec 2 on dry concrete. On wet asphalt, it is approximately 2.5 m/sec 2 . Given that 1 mph corresponds to 0.447 m/sec, find the total distance that a car travels in meters on dry concrete after the brakes are applied until it comes to a complete stop if the initial velocity is 67 mph (30 m/sec) or if the initial braking velocity is 56 mph (25 m/sec). Find the corresponding distances if the surface is slippery wet asphalt.

In dry conditions, with initial velocity ${v}_{0}=30$ m/s, $D=64.3$ and, if ${v}_{0}=25,D=44.64.$ In wet conditions, if ${v}_{0}=30,$ and $D=180$ and if ${v}_{0}=25,D=125.$

John is a 25-year old man who weighs 160 lb. He burns $500-50t$ calories/hr while riding his bike for t hours. If an oatmeal cookie has 55 cal and John eats 4 t cookies during the t th hour, how many net calories has he lost after 3 hours riding his bike?

Sandra is a 25-year old woman who weighs 120 lb. She burns $300-50t$ cal/hr while walking on her treadmill. Her caloric intake from drinking Gatorade is 100 t calories during the t th hour. What is her net decrease in calories after walking for 3 hours?

225 cal

A motor vehicle has a maximum efficiency of 33 mpg at a cruising speed of 40 mph. The efficiency drops at a rate of 0.1 mpg/mph between 40 mph and 50 mph, and at a rate of 0.4 mpg/mph between 50 mph and 80 mph. What is the efficiency in miles per gallon if the car is cruising at 50 mph? What is the efficiency in miles per gallon if the car is cruising at 80 mph? If gasoline costs $3.50/gal, what is the cost of fuel to drive 50 mi at 40 mph, at 50 mph, and at 80 mph? Although some engines are more efficient at given a horsepower than others, on average, fuel efficiency decreases with horsepower at a rate of $1\text{/}25$ mpg/horsepower. If a typical 50-horsepower engine has an average fuel efficiency of 32 mpg, what is the average fuel efficiency of an engine with the following horsepower: 150, 300, 450? $E\left(150\right)=28,E\left(300\right)=22,E\left(450\right)=16$ [T] The following table lists the 2013 schedule of federal income tax versus taxable income. Federal income tax versus taxable income Taxable Income Range The Tax Is … … Of the Amount Over$0–$8925 10%$0
$8925–$36,250 $892.50 + 15%$8925
$36,250–$87,850 $4,991.25 + 25%$36,250
$87,850–$183,250 $17,891.25 + 28%$87,850
$183,250–$398,350 $44,603.25 + 33%$183,250
$398,350–$400,000 $115,586.25 + 35%$398,350
>$400,000$116,163.75 + 39.6% $400,000 Suppose that Steve just received a$10,000 raise. How much of this raise is left after federal taxes if Steve’s salary before receiving the raise was $40,000? If it was$90,000? If it was \$385,000?

[T] The following table provides hypothetical data regarding the level of service for a certain highway.

Highway Speed Range (mph) Vehicles per Hour per Lane Density Range (vehicles/mi)
>60 <600 <10
60–57 600–1000 10–20
57–54 1000–1500 20–30
54–46 1500–1900 30–45
46–30 1900 2100 45–70
<30 Unstable 70–200
1. Plot vehicles per hour per lane on the x -axis and highway speed on the y -axis.
2. Compute the average decrease in speed (in miles per hour) per unit increase in congestion (vehicles per hour per lane) as the latter increases from 600 to 1000, from 1000 to 1500, and from 1500 to 2100. Does the decrease in miles per hour depend linearly on the increase in vehicles per hour per lane?
3. Plot minutes per mile (60 times the reciprocal of miles per hour) as a function of vehicles per hour per lane. Is this function linear?

a. b. Between 600 and 1000 the average decrease in vehicles per hour per lane is −0.0075. Between 1000 and 1500 it is −0.006 per vehicles per hour per lane, and between 1500 and 2100 it is −0.04 vehicles per hour per lane. c. The graph is nonlinear, with minutes per mile increasing dramatically as vehicles per hour per lane reach 2000.

For the next two exercises use the data in the following table, which displays bald eagle populations from 1963 to 2000 in the continental United States.

Population of breeding bald eagle pairs
Year Population of Breeding Pairs of Bald Eagles
1963 487
1974 791
1981 1188
1986 1875
1992 3749
1996 5094
2000 6471

[T] The graph below plots the quadratic $p\left(t\right)=6.48{t}^{2}-80.3\phantom{\rule{0.2em}{0ex}}1t+585.69$ against the data in preceding table, normalized so that $t=0$ corresponds to 1963. Estimate the average number of bald eagles per year present for the 37 years by computing the average value of p over $\left[0,37\right].$ [T] The graph below plots the cubic $p\left(t\right)=0.07{t}^{3}+2.42{t}^{2}-25.63t+521.23$ against the data in the preceding table, normalized so that $t=0$ corresponds to 1963. Estimate the average number of bald eagles per year present for the 37 years by computing the average value of p over $\left[0,37\right].$ $\frac{1}{37}{\int }_{0}^{37}p\left(t\right)dt=\frac{0.07{\left(37\right)}^{3}}{4}+\frac{2.42{\left(37\right)}^{2}}{3}-\frac{25.63\left(37\right)}{2}+521.23\approx 2037$

[T] Suppose you go on a road trip and record your speed at every half hour, as compiled in the following table. The best quadratic fit to the data is $q\left(t\right)=5{x}^{2}-11x+49\text{,}$ shown in the accompanying graph. Integrate q to estimate the total distance driven over the 3 hours.

Time (hr) Speed (mph)
0 (start) 50
1 40
2 50
3 60 As a car accelerates, it does not accelerate at a constant rate; rather, the acceleration is variable. For the following exercises, use the following table, which contains the acceleration measured at every second as a driver merges onto a freeway.

Time (sec) Acceleration (mph/sec)
1 11.2
2 10.6
3 8.1
4 5.4
5 0

[T] The accompanying graph plots the best quadratic fit, $a\left(t\right)=-0.70{t}^{2}+1.44t+10.44,$ to the data from the preceding table. Compute the average value of $a\left(t\right)$ to estimate the average acceleration between $t=0$ and $t=5.$ Average acceleration is $A=\frac{1}{5}{\int }_{0}^{5}a\left(t\right)dt=-\frac{0.7\left({5}^{2}\right)}{3}+\frac{1.44\left(5\right)}{2}+10.44\approx 8.2$ mph/s

[T] Using your acceleration equation from the previous exercise, find the corresponding velocity equation. Assuming the final velocity is 0 mph, find the velocity at time $t=0.$

[T] Using your velocity equation from the previous exercise, find the corresponding distance equation, assuming your initial distance is 0 mi. How far did you travel while you accelerated your car? ( Hint: You will need to convert time units.)

$d\left(t\right)={\int }_{0}^{1}|v\left(t\right)|dt={\int }_{0}^{t}\left(\frac{7}{30}{t}^{3}-0.72{t}^{2}-10.44t+41.033\right)dt=\frac{7}{120}{t}^{4}-0.24{t}^{3}-5.22{t}^{3}+41.033t.$ Then, $d\left(5\right)\approx 81.12$ mph $\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\text{sec}\approx 119$ feet.

[T] The number of hamburgers sold at a restaurant throughout the day is given in the following table, with the accompanying graph plotting the best cubic fit to the data, $b\left(t\right)=0.12{t}^{3}-2.13{t}^{3}+12.13t+3.91,$ with $t=0$ corresponding to 9 a.m. and $t=12$ corresponding to 9 p.m. Compute the average value of $b\left(t\right)$ to estimate the average number of hamburgers sold per hour.

Hours Past Midnight No. of Burgers Sold
9 3
12 28
15 20
18 30
21 45 [T] An athlete runs by a motion detector, which records her speed, as displayed in the following table. The best linear fit to this data, $\ell \left(t\right)=-0.068t+5.14\text{,}$ is shown in the accompanying graph. Use the average value of $\ell \left(t\right)$ between $t=0$ and $t=40$ to estimate the runner’s average speed.

Minutes Speed (m/sec)
0 5
10 4.8
20 3.6
30 3.0
40 2.5 $\frac{1}{40}{\int }_{0}^{40}\left(-0.068t+5.14\right)dt=-\frac{0.068\left(40\right)}{2}+5.14=3.78$

find the integral of tan
Differentiate each from the first principle. y=x,y=1/x
I need help with calculus. Anyone help me.
yes
Hi
Usman
beautiful name usman
Fund
really
Usman
Hi guys
Macquitasha
Hello everyone here
abdulazeez
good day!
joel
hii
Shreya
You are welcome
abdulazeez
shreya
ashif
thanks
joel
hello Sar aapse Kuchh calculate ke sawal poochhne Hain
Sumit
integration seems interesting
it's like a multiple oparation in just one.
Efrain
Definitely integration
tangent line at a point/range on a function f(x) making f'(x)
Luis
Principles of definite integration?
ROHIT
For tangent they'll usually give an x='s value. In that case, solve for y, keep the ordered pair. then find f(x) prime. plug the given x value into the prime and the solution is the slope of the tangent line. Plug the ordered pair into the derived function in y=mx+b format as x and y to solve for B
Anastasia
parcing an area trough a function f(x)
Efrain
Find the length of the arc y = x^2 over 3 when x = 0 and x = 2.
integrate x ln dx from 1 to e
application of function
how i can need help
what ?
Bunyim
defination of math
azam
application of function
azam
azam
what is a circle
Ronnie
math is the science, logic, shape and arrangement
a circle is a hole shape
Jianna
a whole circumference have equal distance from one point
azam
please tell me books which write on function
azam
HE is a Nigerian, wrote the book INTEGRATED MATHEMATICS...CHECK IT OUT!!
Agboke
Woah this is working again
Bruce
show that the f^n f(x)=|x-1| is not differentiable at x=1.
is there any solution manual to calculuse 1 for Gilbert Strang ?
I am beginner
Abdul
I am a beginner
ephraim
l am also beginner
just began, bois!!
Luis
Hello
abdulazeez
abdulazeez
Hey
Bonface
Hi
Jianna
what is mathematics
logical usage of numbers
Leo
thanks
Henry
you welcome
Leo
what's career can one specialize in by doing pure maths
Lucy
Lucy Omollo...... The World is Yours by specializing in pure math. Analytics, Financial engineering ,programming, education, combinatorial mathematics, Game Theory. your skill-set will be like water a necessary element of survival.
David
***onetonline.org/find/descriptor/result/1.A.1.c.1
Bruce
mathematics seems to be anthropocentric deductive reasoning and a little high order logic. I only say this because I can only find two things going on which is infinitely smaller than 0 and anything over 1
David
More comprehensive list here: ***onetonline.org/find/descriptor/result/1.A.1.c.1?a=1
Bruce
so how can we differentiate inductive reasoning and deductive reasoning
Henry
thanks very much Mr David
Henry
hi everyone
Sabir
is there anyone who can guide me in learning the mathematics easily
Sabir
Hi Sabir first step of learning mathematics is by falling in love with it and secondly, watch videos on simple algebra then read and solved problems on it
Leo
yes sabir just do every time practice that is the solution
Henry
it will be work over to you ,u know how mind work ,it prossed the information easily when u are practising regularly
Henry
in calculas,does a self inverse function exist
Lucy
I'm lost in all functions need help
Jonathan
hello i need help in rate of change
Moises
***questioncove.com/invite/QzOQGp
Bruce
Hello
hassan
hi
MJ
hi
Masaniel
so difficult
Masaniel
hello my name is Charles Christian
Hello Charles
Jianna
Hi! I am Dante
Dante
Hi! I'm ashwini
ashwini
halĺo
Roben
Hi
Leo
hello leo
Agboke
can anyone prove why AU(BnC)=(AUB)n(AUC)
Agboke
this one it can't be proven these are assumption
Henry
hello agboke there is no proof for such
Leo
Hi
hi this is wasim
wasim
can anybody put me through flowchart and algorithm here
Agboke
Leo
Luis
music while you math
Luis
dy/dx= 1-cos4x/sin4x
what is the derivatives of 1-cos4x/sin4x
Alma
what is the derivate of Sec2x
Johar
d/dx(sec(2 x)) = 2 tan(2 x) sec(2 x)
AYAN
who knows more about mathematical induction?
Agboke
who know anything about the whole calculus thing 🤔 its killing me 😶
matbakh
Yes
hii
Gagan        By By Mistry Bhavesh 