<< Chapter < Page Chapter >> Page >
This module covers two important theorems, including the fundamental theorem of calculus.

We begin this section with a result that is certainly not a surprise, but we will need it at various places in later proofs, so it's good to state it precisely now.

Suppose f I ( [ a , b ] ) , and suppose a < c < b . Then f I ( [ a , c ] ) , f I ( [ c , b ] ) , and

a b f = a c f + c b f .

Suppose first that h is a step function on [ a , b ] , and let P = { x 0 < x 1 < ... < x n } be a partition of [ a , b ] such that h ( x ) = a i on the subinterval ( x i - 1 , x i ) of P . Of course, we may assume without loss of generality that c is one of the points of P , say c = x k . Clearly h is a step function on both intervals [ a , c ] and [ c , b ] .

Now, let Q 1 = { a = x 0 < x 1 < ... < c = x k } be the partition of [ a , c ] obtained by intersecting P with [ a , c ] , and let Q 2 = { c = x k < x k + 1 < ... < x n = b } be the partition of [ c , b ] obtained by intersecting P with [ c , b ] . We have that

a b h = S P ( h ) = i = 1 n a i ( x i - x i - 1 ) = i = 1 k a i ( x i - x i - 1 ) + i = k + 1 n a i ( x i - x i - 1 ) = S Q 1 ( h ) + S Q 2 ( h ) = a c h + c b h ,

which proves the theorem for step functions.

Now, write f = lim h n , where each h n is a step function on [ a , b ] . Then clearly f = lim h n on [ a , c ] , which shows that f I ( [ a , c ] ) , and

a c f = lim a c h n .

Similarly, f = lim h n on [ c , b ] , showing that f I ( [ c , b ] ) , and

c b f = lim c b h n .

Finally,

a b f = lim a b h n = lim ( a c h n + c b h n ) = lim a c h n + lim c b h n = a c f + c b f ,

as desired.

I's time for the trumpets again! What we call the Fundamental Theorem of Calculuswas discovered by Newton and Leibniz more or less simultaneously in the seventeenth century, and it is without doubt the cornerstone of all we call mathematical analysis today.Perhaps the main theoretical consequence of this theorem is that it provides a procedure for inventing “new” functions. Polynomials are rather naturalfunctions, power series are a simple generalization of polynomials, and then what? It all came down to thinking of a function of a variable x as being the area beneath a curve between a fixed point a and the varying point x . By now, we have polished and massaged these ideas into a careful, detailed development of the subject, which has substantially obscured the originalingenious insights of Newton and Leibniz. On the other hand, our development and proofs are complete, while theirs were based heavily on their intuition.So, here it is.

Fundamental theorem of calculus

Suppose f is an arbitrary element of I ( [ a , b ] ) . Define a function F on [ a , b ] by F ( x ) = a x f . Then:

  1.   F is continuous on [ a , b ] , and F ( a ) = 0 .
  2. If f is continuous at a point c ( a , b ) , then F is differentiable at c and F ' ( c ) = f ( c ) .
  3. Suppose that f is continuous on [ a , b ] . If G is any continuous function on [ a , b ] that is differentiable on ( a , b ) and satisfies G ' ( x ) = f ( x ) for all x ( a , b ) , then
    a b f ( t ) d t = G ( b ) - G ( a ) .

REMARK Part (2) of this theorem is the heart of it, the great discovery of Newton and Leibniz,although most beginning calculus students often think of part (3) as the main statement. Of course it is that third part that enables us to actually compute integrals.

Because f I ( [ a , b ] ) , we know that f I ( [ a , x ] ) for every x [ a , b ] , so that F ( x ) at least is defined.

Also, we know that f is bounded; i.e., there exists an M such that | f ( t ) | M for all t [ a , b ] . Then, if x , y [ a , b ] with x y , we have that

| F ( x ) - F ( y ) | = | a x f - a y f | = | a y f + y x f - a y f | = | y x f | y x | f | y x M = M ( x - y ) ,

so that | F ( x ) - F ( y ) | M | x - y | < ϵ if | x - y | < δ = ϵ / M . This shows that F is (uniformly) continuous on [ a , b ] . Obviously, F ( a ) = a a f = 0 , and part (1) is proved.

Next, suppose that f is continuous at c ( a , b ) , and write L = f ( c ) . Let ϵ > 0 be given. To show that F is differentiable at c and that F ' ( c ) = f ( c ) , we must find a δ > 0 such that if 0 < | h | < δ then

| F ( c + h ) - F ( c ) h - L | < ϵ .

Since f is continuous at c , choose δ > 0 so that | f ( t ) - f ( c ) | < ϵ if | t - c | < δ . Now, assuming that h > 0 for the moment, we have that

F ( c + h ) - F ( c ) = a c + h f - a c f = a c f + c c + h f - a c f = c c + h f ,

and

L = c c + h L h .

So, if 0 < h < δ , then

| F ( c + h ) - F ( c ) h - L | = | c c + h f ( t ) d t h - c c + h L h | = | c c + h ( f ( t ) - L ) d t h | c c + h | f ( t ) - L | d t h = c c + h | f ( t ) - f ( c ) | d t h c c + h ϵ h = ϵ ,

where the last inequality follows because for t [ c , c + h ] , we have that | t - c | h < δ . A similar argument holds if h < 0 . (See the following exercise.) This proves part (2).

Suppose finally that G is continuous on [ a , b ] , differentiable on ( a , b ) , and that G ' ( x ) = f ( x ) for all x ( a , b ) . Then, F - G is continuous on [ a , b ] , differentiable on ( a , b ) , and by part (2) ( F - G ) ' ( x ) = F ' ( x ) - G ' ( x ) = f ( x ) - f ( x ) = 0 for all x ( a , b ) . It then follows from [link] that F - G is a constant function C , whence,

G ( b ) - G ( a ) = F ( b ) + C - F ( a ) - C = F ( b ) = a b f ( t ) d t ,

and the theorem is proved.

  1. Complete the proof of part (2) of the preceding theorem; i.e., take care of the case when h < 0 . HINT: In this case, a < c + h < c . Then, write a c f = a c + h f + c + h c f .
  2. Suppose f is a continuous function on the closed interval [ a , b ] , and that f ' exists and is continuous on the open interval ( a , b ) . Assume further that f ' is integrable on the closed interval [ a , b ] . Prove that f ( x ) - f ( a ) = a x f ' for all x [ a , b ] . Be careful to understand how this is different from the Fundamental Theorem.
  3. Use the Fundamental Theorem to prove that for x 1 we have
    ln ( x ) = F ( x ) 1 x 1 t d t ,
    and for 0 < x < 1 we have
    ln ( x ) = F ( x ) - x 1 1 t d t .
    HINT: Show that these two functions have the same derivative and agree at x = 1 .

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Analysis of functions of a single variable. OpenStax CNX. Dec 11, 2010 Download for free at http://cnx.org/content/col11249/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Analysis of functions of a single variable' conversation and receive update notifications?

Ask