<< Chapter < Page Chapter >> Page >
  • Calculate the limit of a function as x increases or decreases without bound.
  • Recognize a horizontal asymptote on the graph of a function.
  • Estimate the end behavior of a function as x increases or decreases without bound.
  • Recognize an oblique asymptote on the graph of a function.
  • Analyze a function and its derivatives to draw its graph.

We have shown how to use the first and second derivatives of a function to describe the shape of a graph. To graph a function f defined on an unbounded domain, we also need to know the behavior of f as x ± . In this section, we define limits at infinity and show how these limits affect the graph of a function. At the end of this section, we outline a strategy for graphing an arbitrary function f .

Limits at infinity

We begin by examining what it means for a function to have a finite limit at infinity. Then we study the idea of a function with an infinite limit at infinity. Back in Introduction to Functions and Graphs , we looked at vertical asymptotes; in this section we deal with horizontal and oblique asymptotes.

Limits at infinity and horizontal asymptotes

Recall that lim x a f ( x ) = L means f ( x ) becomes arbitrarily close to L as long as x is sufficiently close to a . We can extend this idea to limits at infinity. For example, consider the function f ( x ) = 2 + 1 x . As can be seen graphically in [link] and numerically in [link] , as the values of x get larger, the values of f ( x ) approach 2 . We say the limit as x approaches of f ( x ) is 2 and write lim x f ( x ) = 2 . Similarly, for x < 0 , as the values | x | get larger, the values of f ( x ) approaches 2 . We say the limit as x approaches of f ( x ) is 2 and write lim x a f ( x ) = 2 .

The function f(x) 2 + 1/x is graphed. The function starts negative near y = 2 but then decreases to −∞ near x = 0. The function then decreases from ∞ near x = 0 and gets nearer to y = 2 as x increases. There is a horizontal line denoting the asymptote y = 2.
The function approaches the asymptote y = 2 as x approaches ± .
Values of a function f As x ±
x 10 100 1,000 10,000
2 + 1 x 2.1 2.01 2.001 2.0001
x −10 −100 −1000 −10,000
2 + 1 x 1.9 1.99 1.999 1.9999

More generally, for any function f , we say the limit as x of f ( x ) is L if f ( x ) becomes arbitrarily close to L as long as x is sufficiently large. In that case, we write lim x a f ( x ) = L . Similarly, we say the limit as x of f ( x ) is L if f ( x ) becomes arbitrarily close to L as long as x < 0 and | x | is sufficiently large. In that case, we write lim x f ( x ) = L . We now look at the definition of a function having a limit at infinity.

Definition

(Informal) If the values of f ( x ) become arbitrarily close to L as x becomes sufficiently large, we say the function f has a limit at infinity    and write

lim x f ( x ) = L .

If the values of f ( x ) becomes arbitrarily close to L for x < 0 as | x | becomes sufficiently large, we say that the function f has a limit at negative infinity and write

lim x f ( x ) = L .

If the values f ( x ) are getting arbitrarily close to some finite value L as x or x , the graph of f approaches the line y = L . In that case, the line y = L is a horizontal asymptote of f ( [link] ). For example, for the function f ( x ) = 1 x , since lim x f ( x ) = 0 , the line y = 0 is a horizontal asymptote of f ( x ) = 1 x .

Definition

If lim x f ( x ) = L or lim x f ( x ) = L , we say the line y = L is a horizontal asymptote    of f .

The figure is broken up into two figures labeled a and b. Figure a shows a function f(x) approaching but never touching a horizontal dashed line labeled L from above. Figure b shows a function f(x) approaching but never a horizontal dashed line labeled M from below.
(a) As x , the values of f are getting arbitrarily close to L . The line y = L is a horizontal asymptote of f . (b) As x , the values of f are getting arbitrarily close to M . The line y = M is a horizontal asymptote of f .

Questions & Answers

find the equation of the tangent to the curve y=2x³-x²+3x+1 at the points x=1 and x=3
Esther Reply
derivative of logarithms function
Iqra Reply
how to solve this question
sidra
ex 2.1 question no 11
khansa
anyone can help me
khansa
question please
Rasul
ex 2.1 question no. 11
khansa
i cant type here
khansa
Find the derivative of g(x)=−3.
Abdullah Reply
any genius online ? I need help!!
Guzorochi Reply
how can i help you?
Pina
need to learn polynomial
Zakariya
i will teach...
nandu
I'm waiting
Zakariya
plz help me in question
Abish
How can I help you?
Tlou
evaluate the following computation (x³-8/x-2)
Murtala Reply
teach me how to solve the first law of calculus.
Uncle Reply
teach me also how to solve the first law of calculus
Bilson
what is differentiation
Ibrahim Reply
only god knows😂
abdulkadir
f(x) = x-2 g(x) = 3x + 5 fog(x)? f(x)/g(x)
Naufal Reply
fog(x)= f(g(x)) = x-2 = 3x+5-2 = 3x+3 f(x)/g(x)= x-2/3x+5
diron
pweding paturo nsa calculus?
jimmy
how to use fundamental theorem to solve exponential
JULIA Reply
find the bounded area of the parabola y^2=4x and y=16x
Omar Reply
what is absolute value means?
Geo Reply
Chicken nuggets
Hugh
🐔
MM
🐔🦃 nuggets
MM
(mathematics) For a complex number a+bi, the principal square root of the sum of the squares of its real and imaginary parts, √a2+b2 . Denoted by | |. The absolute value |x| of a real number x is √x2 , which is equal to x if x is non-negative, and −x if x is negative.
Ismael
find integration of loge x
Game Reply
find the volume of a solid about the y-axis, x=0, x=1, y=0, y=7+x^3
Godwin Reply
how does this work
Brad Reply
Can calculus give the answers as same as other methods give in basic classes while solving the numericals?
Cosmos Reply
log tan (x/4+x/2)
Rohan
please answer
Rohan
y=(x^2 + 3x).(eipix)
Claudia
is this a answer
Ismael
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask