<< Chapter < Page Chapter >> Page >
  • Explain the meaning of Rolle’s theorem.
  • Describe the significance of the Mean Value Theorem.
  • State three important consequences of the Mean Value Theorem.

The Mean Value Theorem is one of the most important theorems in calculus. We look at some of its implications at the end of this section. First, let’s start with a special case of the Mean Value Theorem, called Rolle’s theorem.

Rolle’s theorem

Informally, Rolle’s theorem states that if the outputs of a differentiable function f are equal at the endpoints of an interval, then there must be an interior point c where f ( c ) = 0 . [link] illustrates this theorem.

The figure is divided into three parts labeled a, b, and c. Figure a shows the first quadrant with values a, c, and b marked on the x-axis. A downward-facing parabola is drawn such that its values at a and b are the same. The point c is the global maximum, and it is noted that f’(c) = 0. Figure b shows the first quadrant with values a, c, and b marked on the x-axis. An upward-facing parabola is drawn such that its values at a and b are the same. The point c is the global minimum, and it is noted that f’(c) = 0. Figure c shows the first quadrant with points a, c1, c2, and b marked on the x-axis. One period of a sine wave is drawn such that its values at a and b are equal. The point c1 is the global maximum, and it is noted that f’(c1) = 0. The point c2 is the global minimum, and it is noted that f’(c2) = 0.
If a differentiable function f satisfies f ( a ) = f ( b ) , then its derivative must be zero at some point(s) between a and b .

Rolle’s theorem

Let f be a continuous function over the closed interval [ a , b ] and differentiable over the open interval ( a , b ) such that f ( a ) = f ( b ) . There then exists at least one c ( a , b ) such that f ( c ) = 0 .

Proof

Let k = f ( a ) = f ( b ) . We consider three cases:

  1. f ( x ) = k for all x ( a , b ) .
  2. There exists x ( a , b ) such that f ( x ) > k .
  3. There exists x ( a , b ) such that f ( x ) < k .

Case 1: If f ( x ) = 0 for all x ( a , b ) , then f ( x ) = 0 for all x ( a , b ) .

Case 2: Since f is a continuous function over the closed, bounded interval [ a , b ] , by the extreme value theorem, it has an absolute maximum. Also, since there is a point x ( a , b ) such that f ( x ) > k , the absolute maximum is greater than k . Therefore, the absolute maximum does not occur at either endpoint. As a result, the absolute maximum must occur at an interior point c ( a , b ) . Because f has a maximum at an interior point c , and f is differentiable at c , by Fermat’s theorem, f ( c ) = 0 .

Case 3: The case when there exists a point x ( a , b ) such that f ( x ) < k is analogous to case 2, with maximum replaced by minimum.

An important point about Rolle’s theorem is that the differentiability of the function f is critical. If f is not differentiable, even at a single point, the result may not hold. For example, the function f ( x ) = | x | 1 is continuous over [ −1 , 1 ] and f ( −1 ) = 0 = f ( 1 ) , but f ( c ) 0 for any c ( −1 , 1 ) as shown in the following figure.

The function f(x) = |x| − 1 is graphed. It is shown that f(1) = f(−1), but it is noted that there is no c such that f’(c) = 0.
Since f ( x ) = | x | 1 is not differentiable at x = 0 , the conditions of Rolle’s theorem are not satisfied. In fact, the conclusion does not hold here; there is no c ( −1 , 1 ) such that f ( c ) = 0 .

Let’s now consider functions that satisfy the conditions of Rolle’s theorem and calculate explicitly the points c where f ( c ) = 0 .

Using rolle’s theorem

For each of the following functions, verify that the function satisfies the criteria stated in Rolle’s theorem and find all values c in the given interval where f ( c ) = 0 .

  1. f ( x ) = x 2 + 2 x over [ −2 , 0 ]
  2. f ( x ) = x 3 4 x over [ −2 , 2 ]
  1. Since f is a polynomial, it is continuous and differentiable everywhere. In addition, f ( −2 ) = 0 = f ( 0 ) . Therefore, f satisfies the criteria of Rolle’s theorem. We conclude that there exists at least one value c ( −2 , 0 ) such that f ( c ) = 0 . Since f ( x ) = 2 x + 2 = 2 ( x + 1 ) , we see that f ( c ) = 2 ( c + 1 ) = 0 implies c = −1 as shown in the following graph.
    The function f(x) = x2 +2x is graphed. It is shown that f(0) = f(−2), and a dashed horizontal line is drawn at the absolute minimum at (−1, −1).
    This function is continuous and differentiable over [ −2 , 0 ] , f ( c ) = 0 when c = −1 .
  2. As in part a. f is a polynomial and therefore is continuous and differentiable everywhere. Also, f ( −2 ) = 0 = f ( 2 ) . That said, f satisfies the criteria of Rolle’s theorem. Differentiating, we find that f ( x ) = 3 x 2 4 . Therefore, f ( c ) = 0 when x = ± 2 3 . Both points are in the interval [ −2 , 2 ] , and, therefore, both points satisfy the conclusion of Rolle’s theorem as shown in the following graph.
    The function f(x) = x3 – 4x is graphed. It is obvious that f(2) = f(−2) = f(0). Dashed horizontal lines are drawn at x = ±2/square root of 3, which are the local maximum and minimum.
    For this polynomial over [ −2 , 2 ] , f ( c ) = 0 at x = ± 2 / 3 .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

determine the area of the region enclosed by x²+y=1,2x-y+4=0
Gerald Reply
Hi
MP
Hi too
Vic
hello please anyone with calculus PDF should share
Adegoke
Which kind of pdf do you want bro?
Aftab
hi
Abdul
can I get calculus in pdf
Abdul
How to use it to slove fraction
Tricia Reply
Hello please can someone tell me the meaning of this group all about, yes I know is calculus group but yet nothing is showing up
Shodipo
You have downloaded the aplication Calculus Volume 1, tackling about lessons for (mostly) college freshmen, Calculus 1: Differential, and this group I think aims to let concerns and questions from students who want to clarify something about the subject. Well, this is what I guess so.
Jean
Im not in college but this will still help
nothing
how can we scatch a parabola graph
Dever Reply
Ok
Endalkachew
how can I solve differentiation?
Sir Reply
with the help of different formulas and Rules. we use formulas according to given condition or according to questions
CALCULUS
For example any questions...
CALCULUS
what is the procedures in solving number 1?
Vier Reply
review of funtion role?
Md Reply
for the function f(x)={x^2-7x+104 x<=7 7x+55 x>7' does limx7 f(x) exist?
find dy÷dx (y^2+2 sec)^2=4(x+1)^2
Rana Reply
Integral of e^x/(1+e^2x)tan^-1 (e^x)
naveen Reply
why might we use the shell method instead of slicing
Madni Reply
fg[[(45)]]²+45⅓x²=100
albert Reply
find the values of c such that the graph of f(x)=x^4+2x^3+cx^2+2x+2
Ramya Reply
anyone to explain some basic in calculus
Adegoke Reply
I can
Debdoot
A conical container of radius 10 ft and height 30 ft is filled with water to a depth of 15 ft. How much work is required to pump all the water out through a hole in the top of the container if the unit weight of the water is 62.4 lb/ft^3?
Milca Reply
hi am new here I really wants to know how the solve calculus
IBRAHIM
me too. I want to know calculation involved in calculus.
Katiba
evaluate triple integral xyz dx dy dz where the domain v is bounded by the plane x+y+z=a and the co-ordinate planes
BAGAM Reply
So how can this question be solved
Eddy
i m not sure but it could be xyz/2
Leo
someone should explain with a photo shot of the working pls
Adegoke
I think we should sort it out.
Eunice
Eunice Toe you can try it if you have the idea
Adegoke
how
Eunice
a^6÷8
Muzamil
i think a^6 ÷ 8
Muzamil
Practice Key Terms 2

Get the best Calculus volume 1 course in your pocket!





Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask