# 4.10 Antiderivatives  (Page 3/10)

 Page 3 / 10
Integration formulas
Differentiation Formula Indefinite Integral
$\frac{d}{dx}\left(k\right)=0$ $\int kdx=\int k{x}^{0}dx=kx+C$
$\frac{d}{dx}\left({x}^{n}\right)=n{x}^{n-1}$ $\int {x}^{n}dn=\frac{{x}^{n+1}}{n+1}+C$ for $n\ne \text{−}1$
$\frac{d}{dx}\left(\text{ln}|x|\right)=\frac{1}{x}$ $\int \frac{1}{x}dx=\text{ln}|x|+C$
$\frac{d}{dx}\left({e}^{x}\right)={e}^{x}$ $\int {e}^{x}dx={e}^{x}+C$
$\frac{d}{dx}\left(\text{sin}\phantom{\rule{0.1em}{0ex}}x\right)=\text{cos}\phantom{\rule{0.1em}{0ex}}x$ $\int \text{cos}\phantom{\rule{0.1em}{0ex}}x\phantom{\rule{0.1em}{0ex}}dx=\text{sin}\phantom{\rule{0.1em}{0ex}}x+C$
$\frac{d}{dx}\left(\text{cos}\phantom{\rule{0.1em}{0ex}}x\right)=\text{−}\text{sin}\phantom{\rule{0.1em}{0ex}}x$ $\int \text{sin}\phantom{\rule{0.1em}{0ex}}x\phantom{\rule{0.1em}{0ex}}dx=\text{−}\text{cos}\phantom{\rule{0.1em}{0ex}}x+C$
$\frac{d}{dx}\left(\text{tan}\phantom{\rule{0.1em}{0ex}}x\right)={\text{sec}}^{2}x$ $\int {\text{sec}}^{2}x\phantom{\rule{0.1em}{0ex}}dx=\text{tan}\phantom{\rule{0.1em}{0ex}}x+C$
$\frac{d}{dx}\left(\text{csc}\phantom{\rule{0.1em}{0ex}}x\right)=\text{−}\text{csc}\phantom{\rule{0.1em}{0ex}}x\phantom{\rule{0.1em}{0ex}}\text{cot}\phantom{\rule{0.1em}{0ex}}x$ $\int \text{csc}\phantom{\rule{0.1em}{0ex}}x\phantom{\rule{0.1em}{0ex}}\text{cot}\phantom{\rule{0.1em}{0ex}}x\phantom{\rule{0.1em}{0ex}}dx=\text{−}\text{csc}\phantom{\rule{0.1em}{0ex}}x+C$
$\frac{d}{dx}\left(\text{sec}\phantom{\rule{0.1em}{0ex}}x\right)=\text{sec}\phantom{\rule{0.1em}{0ex}}x\phantom{\rule{0.1em}{0ex}}\text{tan}\phantom{\rule{0.1em}{0ex}}x$ $\int \text{sec}\phantom{\rule{0.1em}{0ex}}x\phantom{\rule{0.1em}{0ex}}\text{tan}\phantom{\rule{0.1em}{0ex}}x\phantom{\rule{0.1em}{0ex}}dx=\text{sec}\phantom{\rule{0.1em}{0ex}}x+C$
$\frac{d}{dx}\left(\text{cot}\phantom{\rule{0.1em}{0ex}}x\right)=\text{−}{\text{csc}}^{2}x$ $\int {\text{csc}}^{2}x\phantom{\rule{0.1em}{0ex}}dx=\text{−}\text{cot}\phantom{\rule{0.1em}{0ex}}x+C$
$\frac{d}{dx}\left({\text{sin}}^{-1}x\right)=\frac{1}{\sqrt{1-{x}^{2}}}$ $\int \frac{1}{\sqrt{1-{x}^{2}}}={\text{sin}}^{-1}x+C$
$\frac{d}{dx}\left({\text{tan}}^{-1}x\right)=\frac{1}{1+{x}^{2}}$ $\int \frac{1}{1+{x}^{2}}dx={\text{tan}}^{-1}x+C$
$\frac{d}{dx}\left({\text{sec}}^{-1}|x|\right)=\frac{1}{x\sqrt{{x}^{2}-1}}$ $\int \frac{1}{x\sqrt{{x}^{2}-1}}dx={\text{sec}}^{-1}|x|+C$

From the definition of indefinite integral of $f,$ we know

$\int f\left(x\right)dx=F\left(x\right)+C$

if and only if $F$ is an antiderivative of $f.$ Therefore, when claiming that

$\int f\left(x\right)dx=F\left(x\right)+C$

it is important to check whether this statement is correct by verifying that ${F}^{\prime }\left(x\right)=f\left(x\right).$

## Verifying an indefinite integral

Each of the following statements is of the form $\int f\left(x\right)dx=F\left(x\right)+C.$ Verify that each statement is correct by showing that ${F}^{\prime }\left(x\right)=f\left(x\right).$

1. $\int \left(x+{e}^{x}\right)dx=\frac{{x}^{2}}{2}+{e}^{x}+C$
2. $\int x{e}^{x}dx=x{e}^{x}-{e}^{x}+C$
1. Since
$\frac{d}{dx}\left(\frac{{x}^{2}}{2}+{e}^{x}+C\right)=x+{e}^{x},$

the statement
$\int \left(x+{e}^{x}\right)dx=\frac{{x}^{2}}{2}+{e}^{x}+C$

is correct.
Note that we are verifying an indefinite integral for a sum. Furthermore, $\frac{{x}^{2}}{2}$ and ${e}^{x}$ are antiderivatives of $x$ and ${e}^{x},$ respectively, and the sum of the antiderivatives is an antiderivative of the sum. We discuss this fact again later in this section.
2. Using the product rule, we see that
$\frac{d}{dx}\left(x{e}^{x}-{e}^{x}+C\right)={e}^{x}+x{e}^{x}-{e}^{x}=x{e}^{x}.$

Therefore, the statement
$\int x{e}^{x}dx=x{e}^{x}-{e}^{x}+C$

is correct.
Note that we are verifying an indefinite integral for a product. The antiderivative $x{e}^{x}-{e}^{x}$ is not a product of the antiderivatives. Furthermore, the product of antiderivatives, ${x}^{2}{e}^{x}\text{/}2$ is not an antiderivative of $x{e}^{x}$ since
$\frac{d}{dx}\left(\frac{{x}^{2}{e}^{x}}{2}\right)=x{e}^{x}+\frac{{x}^{2}{e}^{x}}{2}\ne x{e}^{x}.$

In general, the product of antiderivatives is not an antiderivative of a product.

Verify that $\int x\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}x\phantom{\rule{0.1em}{0ex}}dx=x\phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}x+\text{cos}\phantom{\rule{0.1em}{0ex}}x+C.$

$\frac{d}{dx}\left(x\phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.1em}{0ex}}x+\text{cos}\phantom{\rule{0.1em}{0ex}}x+C\right)=\text{sin}\phantom{\rule{0.1em}{0ex}}x+x\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}x-\text{sin}\phantom{\rule{0.1em}{0ex}}x=x\phantom{\rule{0.1em}{0ex}}\text{cos}\phantom{\rule{0.1em}{0ex}}x$

In [link] , we listed the indefinite integrals for many elementary functions. Let’s now turn our attention to evaluating indefinite integrals for more complicated functions. For example, consider finding an antiderivative of a sum $f+g.$ In [link] a. we showed that an antiderivative of the sum $x+{e}^{x}$ is given by the sum $\left(\frac{{x}^{2}}{2}\right)+{e}^{x}$ —that is, an antiderivative of a sum is given by a sum of antiderivatives. This result was not specific to this example. In general, if $F$ and $G$ are antiderivatives of any functions $f$ and $g,$ respectively, then

$\frac{d}{dx}\left(F\left(x\right)+G\left(x\right)\right)={F}^{\prime }\left(x\right)+{G}^{\prime }\left(x\right)=f\left(x\right)+g\left(x\right).$

Therefore, $F\left(x\right)+G\left(x\right)$ is an antiderivative of $f\left(x\right)+g\left(x\right)$ and we have

$\int \left(f\left(x\right)+g\left(x\right)\right)dx=F\left(x\right)+G\left(x\right)+C.$

Similarly,

$\int \left(f\left(x\right)-g\left(x\right)\right)dx=F\left(x\right)-G\left(x\right)+C.$

In addition, consider the task of finding an antiderivative of $kf\left(x\right),$ where $k$ is any real number. Since

$\frac{d}{dx}\left(kf\left(x\right)\right)=k\frac{d}{dx}F\left(x\right)=k{F}^{\prime }\left(x\right)$

for any real number $k,$ we conclude that

$\int kf\left(x\right)dx=kF\left(x\right)+C.$

These properties are summarized next.

## Properties of indefinite integrals

Let $F$ and $G$ be antiderivatives of $f$ and $g,$ respectively, and let $k$ be any real number.

Sums and Differences

$\int \left(f\left(x\right)\text{±}g\left(x\right)\right)dx=F\left(x\right)\text{±}G\left(x\right)+C$

Constant Multiples

$\int kf\left(x\right)dx=kF\left(x\right)+C$

From this theorem, we can evaluate any integral involving a sum, difference, or constant multiple of functions with antiderivatives that are known. Evaluating integrals involving products, quotients, or compositions is more complicated (see [link] b. for an example involving an antiderivative of a product.) We look at and address integrals involving these more complicated functions in Introduction to Integration . In the next example, we examine how to use this theorem to calculate the indefinite integrals of several functions.

any genius online ? I need help!!
Pina
need to learn polynomial
Zakariya
i will teach...
nandu
I'm waiting
Zakariya
need help on real analysis
Guzorochi
evaluate the following computation (x³-8/x-2)
teach me how to solve the first law of calculus.
what is differentiation
f(x) = x-2 g(x) = 3x + 5 fog(x)? f(x)/g(x)
fog(x)= f(g(x)) = x-2 = 3x+5-2 = 3x+3 f(x)/g(x)= x-2/3x+5
diron
pweding paturo nsa calculus?
jimmy
how to use fundamental theorem to solve exponential
find the bounded area of the parabola y^2=4x and y=16x
what is absolute value means?
Chicken nuggets
Hugh
🐔
MM
🐔🦃 nuggets
MM
(mathematics) For a complex number a+bi, the principal square root of the sum of the squares of its real and imaginary parts, √a2+b2 . Denoted by | |. The absolute value |x| of a real number x is √x2 , which is equal to x if x is non-negative, and −x if x is negative.
Ismael
find integration of loge x
find the volume of a solid about the y-axis, x=0, x=1, y=0, y=7+x^3
how does this work
Can calculus give the answers as same as other methods give in basic classes while solving the numericals?
log tan (x/4+x/2)
Rohan
Rohan
y=(x^2 + 3x).(eipix)
Claudia
Ismael
A Function F(X)=Sinx+cosx is odd or even?
neither
David
Neither
Lovuyiso
f(x)=1/1+x^2 |=[-3,1]
apa itu?
fauzi
determine the area of the region enclosed by x²+y=1,2x-y+4=0
Hi
MP
Hi too
Vic
hello please anyone with calculus PDF should share
Which kind of pdf do you want bro?
Aftab
hi
Abdul
can I get calculus in pdf
Abdul
explain for me
Usman
okay I have such documents
Fitzgerald
Hamza

#### Get Jobilize Job Search Mobile App in your pocket Now! By OpenStax By OpenStax By Kimberly Nichols By Briana Knowlton By OpenStax By Michael Sag By Jonathan Long By Carly Allen By Yasser Ibrahim By OpenStax