<< Chapter < Page Chapter >> Page >

We use this fact and our knowledge of derivatives to find all the antiderivatives for several functions.

Finding antiderivatives

For each of the following functions, find all antiderivatives.

  1. f ( x ) = 3 x 2
  2. f ( x ) = 1 x
  3. f ( x ) = cos x
  4. f ( x ) = e x
  1. Because
    d d x ( x 3 ) = 3 x 2

    then F ( x ) = x 3 is an antiderivative of 3 x 2 . Therefore, every antiderivative of 3 x 2 is of the form x 3 + C for some constant C , and every function of the form x 3 + C is an antiderivative of 3 x 2 .
  2. Let f ( x ) = ln | x | . For x > 0 , f ( x ) = ln ( x ) and
    d d x ( ln x ) = 1 x .

    For x < 0 , f ( x ) = ln ( x ) and
    d d x ( ln ( x ) ) = 1 x = 1 x .

    Therefore,
    d d x ( ln | x | ) = 1 x .

    Thus, F ( x ) = ln | x | is an antiderivative of 1 x . Therefore, every antiderivative of 1 x is of the form ln | x | + C for some constant C and every function of the form ln | x | + C is an antiderivative of 1 x .
  3. We have
    d d x ( sin x ) = cos x ,

    so F ( x ) = sin x is an antiderivative of cos x . Therefore, every antiderivative of cos x is of the form sin x + C for some constant C and every function of the form sin x + C is an antiderivative of cos x .
  4. Since
    d d x ( e x ) = e x ,

    then F ( x ) = e x is an antiderivative of e x . Therefore, every antiderivative of e x is of the form e x + C for some constant C and every function of the form e x + C is an antiderivative of e x .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find all antiderivatives of f ( x ) = sin x .

cos x + C

Got questions? Get instant answers now!

Indefinite integrals

We now look at the formal notation used to represent antiderivatives and examine some of their properties. These properties allow us to find antiderivatives of more complicated functions. Given a function f , we use the notation f ( x ) or d f d x to denote the derivative of f . Here we introduce notation for antiderivatives. If F is an antiderivative of f , we say that F ( x ) + C is the most general antiderivative of f and write

f ( x ) d x = F ( x ) + C .

The symbol is called an integral sign , and f ( x ) d x is called the indefinite integral of f .

Definition

Given a function f , the indefinite integral    of f , denoted

f ( x ) d x ,

is the most general antiderivative of f . If F is an antiderivative of f , then

f ( x ) d x = F ( x ) + C .

The expression f ( x ) is called the integrand and the variable x is the variable of integration .

Given the terminology introduced in this definition, the act of finding the antiderivatives of a function f is usually referred to as integrating f .

For a function f and an antiderivative F , the functions F ( x ) + C , where C is any real number, is often referred to as the family of antiderivatives of f . For example, since x 2 is an antiderivative of 2 x and any antiderivative of 2 x is of the form x 2 + C , we write

2 x d x = x 2 + C .

The collection of all functions of the form x 2 + C , where C is any real number, is known as the family of antiderivatives of 2 x . [link] shows a graph of this family of antiderivatives.

The graphs for y = x2 + 2, y = x2 + 1, y = x2, y = x2 − 1, and y = x2 − 2 are shown.
The family of antiderivatives of 2 x consists of all functions of the form x 2 + C , where C is any real number.

For some functions, evaluating indefinite integrals follows directly from properties of derivatives. For example, for n 1 ,

x n d x = x n + 1 n + 1 + C ,

which comes directly from

d d x ( x n + 1 n + 1 ) = ( n + 1 ) x n n + 1 = x n .

This fact is known as the power rule for integrals .

Power rule for integrals

For n 1 ,

x n d x = x n + 1 n + 1 + C .

Evaluating indefinite integrals for some other functions is also a straightforward calculation. The following table lists the indefinite integrals for several common functions. A more complete list appears in Appendix B .

Questions & Answers

Good morning,,, how are you
Harrieta Reply
d/dx{1/y - lny + X^3.Y^5}
mogomotsi Reply
How to identify domain and range
Umar Reply
hello
Akpevwe
He,,
Harrieta
hi
Dr
hello
velocity
I only talk to girls
Dr
women are smart then guys
Dr
Smarter
Adri
sorry
Dr
hi adri ana
Dr
:(
Shun
was up
Dr
hello
Adarsh
is it chatting app?.. I do not see any calculus here. lol
Adarsh
Find the arc length of the graph of f(x) = In (sinx) on the interval [Π/4, Π/2].
mukul Reply
Sand falling freely from a lorry form a conical shape whose height is always equal to one-third the radius of the base. a. How fast is the volume increasing when the radius of the base is (1m) and increasing at the rate of 1/4cm/sec Pls help me solve
ade
show that lim f(x) + lim g(x)=m+l
BARNABAS Reply
list the basic elementary differentials
Chio Reply
Differentiation and integration
Okikiola Reply
yes
Damien
proper definition of derivative
Syed Reply
the maximum rate of change of one variable with respect to another variable
Amdad
terms of an AP is 1/v and the vth term is 1/u show that the sum of uv terms is 1/2(uv+1)
Inembo Reply
what is calculus?
BISWAJIT Reply
calculus is math that studies the change in math, such as the rate and distance,
Tamarcus
what are the topics in calculus
Augustine
what is limit of a function?
Geoffrey Reply
what is x and how x=9.1 take?
Pravin Reply
what is f(x)
Inembo Reply
the function at x
Marc
also known as the y value so I could say y=2x or f(x)= 2x same thing just using functional notation your next question is what is dependent and independent variables. I am Dyslexic but know math and which is which confuses me. but one can vary the x value while y depends on which x you use. also
Marc
up domain and range
Marc
enjoy your work and good luck
Marc
I actually wanted to ask another questions on sets if u dont mind please?
Inembo
I have so many questions on set and I really love dis app I never believed u would reply
Inembo
Hmm go ahead and ask you got me curious too much conversation here
Adri
am sorry for disturbing I really want to know math that's why *I want to know the meaning of those symbols in sets* e.g n,U,A', etc pls I want to know it and how to solve its problems
Inembo
and how can i solve a question like dis *in a group of 40 students, 32 offer maths and 24 offer physics and 4 offer neither maths nor physics , how many offer both maths and physics*
Inembo
next questions what do dy mean by (A' n B^c)^c'
Inembo
The sets help you to define the function. The function is like a magic box where you put inside stuff(numbers or sets) and you get out the stuff but in different shapes (forms).
Adri
I dont understand what you wanna say by (A' n B^c)^c'
Adri
(A' n B (rise to the power of c)) all rise to the power of c
Inembo
Aaaahh
Adri
Ok so the set is formed by vectors and not numbers
Adri
A vector of length n
Adri
But you can make a set out of matrixes as well
Adri
I I don't even understand sets I wat to know d meaning of all d symbolsnon sets
Inembo
Wait what's your math level?
Adri
High-school?
Adri
yes
Inembo
am having big problem understanding sets more than other math topics
Inembo
So f:R->R means that the function takes real numbers and provides real numer. For ex. If f(x) =2x this means if you give to your function a real number like 2,it gives you also a real number 2times2=4
Adri
pls answer this question *in a group of 40 students, 32 offer maths and 24 offer physics and 4 offer neither maths nor physics , how many offer both maths and physics*
Inembo
If you have f:R^n->R^n you give to your function a vector of length n like (a1,a2,...an) where all a1,.. an are reals and gives you also a vector of length n... I don't know if i answering your question. Otherwise on YouTube you havr many videos where they explain it in a simple way
Adri
I would say 24
Adri
Offer both
Adri
Sorry 20
Adri
Actually you have 40 - 4 =36 who offer maths or physics or both.
Adri
I know its 20 but how to prove it
Inembo
You have 32+24=56who offer courses
Adri
56-36=20 who give both courses... I would say that
Adri
solution: In a question involving sets and Venn diagram, the sum of the members of set A + set B - the joint members of both set A and B + the members that are not in sets A or B = the total members of the set. In symbolic form n(A U B) = n(A) + n (B) - n (A and B) + n (A U B)'.
Mckenzie
In the case of sets A and B use the letters m and p to represent the sets and we have: n (M U P) = 40; n (M) = 24; n (P) = 32; n (M and P) = unknown; n (M U P)' = 4
Mckenzie
Now substitute the numerical values for the symbolic representation 40 = 24 + 32 - n(M and P) + 4 Now solve for the unknown using algebra: 40 = 24 + 32+ 4 - n(M and P) 40 = 60 - n(M and P) Add n(M and P), as well, subtract 40 from both sides of the equation to find the answer.
Mckenzie
40 - 40 + n(M and P) = 60 - 40 - n(M and P) + n(M and P) Solution: n(M and P) = 20
Mckenzie
thanks
Inembo
Simpler form: Add the sums of set M, set P and the complement of the union of sets M and P then subtract the number of students from the total.
Mckenzie
n(M and P) = (32 + 24 + 4) - 40 = 60 - 40 = 20
Mckenzie
how do i evaluate integral of x^1/2 In x
ayo Reply
first you simplify the given expression, which gives (x^2/2). Then you now integrate the above simplified expression which finally gives( lnx^2).
Ahmad
by using integration product formula
Roha
find derivative f(x)=1/x
Mul Reply
-1/x^2, use the chain rule
Andrew
f(x)=x^3-2x
Mul
what is domin in this question
noman
all real numbers . except zero
Roha
please try to guide me how?
Meher
what do u want to ask
Roha
?
Roha
the domain of the function is all real number excluding zero, because the rational function 1/x is a representation of a fractional equation (precisely inverse function). As in elementary mathematics the concept of dividing by zero is nonexistence, so zero will not make the fractional statement
Mckenzie
a function's answer/range should not be in the form of 1/0 and there should be no imaginary no. say square root of any negative no. (-1)^1/2
Roha
domain means everywhere along the x axis. since this function is not discontinuous anywhere along the x axis, then the domain is said to be all values of x.
Andrew
Derivative of a function
Waqar
right andrew ... this function is only discontinuous at 0
Roha
of sorry, I didn't realize he was taking about the function 1/x ...I thought he was referring to the function x^3-2x.
Andrew
yep...it's 1/x...!!!
Roha
true and cannot be apart of the domain that makes up the relation of the graph y = 1/x. The value of the denominator of the rational function can never be zero, because the result of the output value (range value of the graph when x =0) is undefined.
Mckenzie
👍
Roha
Therefore, when x = 0 the image of the rational function does not exist at this domain value, but exist at all other x values (domain) that makes the equation functional, and the graph drawable.
Mckenzie
👍
Roha
Roha are u A Student
Lutf
yes
Roha
Practice Key Terms 3

Get the best Calculus volume 1 course in your pocket!





Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask