# 4.1 Related rates  (Page 4/7)

 Page 4 / 7

## Water draining from a funnel

Water is draining from the bottom of a cone-shaped funnel at the rate of $0.0{3\phantom{\rule{0.2em}{0ex}}\text{ft}}^{3}\text{/sec}.$ The height of the funnel is 2 ft and the radius at the top of the funnel is $1\phantom{\rule{0.2em}{0ex}}\text{ft}.$ At what rate is the height of the water in the funnel changing when the height of the water is $\frac{1}{2}\phantom{\rule{0.2em}{0ex}}\text{ft}?$

Step 1: Draw a picture introducing the variables.

Let $h$ denote the height of the water in the funnel, $r$ denote the radius of the water at its surface, and $V$ denote the volume of the water.

Step 2: We need to determine $\frac{dh}{dt}$ when $h=\frac{1}{2}\phantom{\rule{0.2em}{0ex}}\text{ft}.$ We know that $\frac{dV}{dt}=-0.03\phantom{\rule{0.2em}{0ex}}\text{ft/sec}.$

Step 3: The volume of water in the cone is

$V=\frac{1}{3}\pi {r}^{2}h.$

From the figure, we see that we have similar triangles. Therefore, the ratio of the sides in the two triangles is the same. Therefore, $\frac{r}{h}=\frac{1}{2}$ or $r=\frac{h}{2}.$ Using this fact, the equation for volume can be simplified to

$V=\frac{1}{3}\pi {\left(\frac{h}{2}\right)}^{2}h=\frac{\pi }{12}\phantom{\rule{0.1em}{0ex}}{h}^{3}.$

Step 4: Applying the chain rule while differentiating both sides of this equation with respect to time $t,$ we obtain

$\frac{dV}{dt}=\frac{\pi }{4}\phantom{\rule{0.1em}{0ex}}{h}^{2}\frac{dh}{dt}.$

Step 5: We want to find $\frac{dh}{dt}$ when $h=\frac{1}{2}\phantom{\rule{0.2em}{0ex}}\text{ft}.$ Since water is leaving at the rate of $0.0{3\phantom{\rule{0.2em}{0ex}}\text{ft}}^{3}\text{/sec},$ we know that $\frac{dV}{dt}=-0.03{\phantom{\rule{0.2em}{0ex}}\text{ft}}^{3}\text{/sec}.$ Therefore,

$-0.03=\frac{\pi }{4}{\left(\frac{1}{2}\right)}^{2}\frac{dh}{dt}\text{},$

which implies

$-0.03=\frac{\pi }{16}\phantom{\rule{0.2em}{0ex}}\frac{dh}{dt}.$

It follows that

$\frac{dh}{dt}=-\frac{0.48}{\pi }=-0.153\phantom{\rule{0.2em}{0ex}}\text{ft/sec}.$

At what rate is the height of the water changing when the height of the water is $\frac{1}{4}\phantom{\rule{0.2em}{0ex}}\text{ft}?$

$-0.61\phantom{\rule{0.2em}{0ex}}\text{ft/sec}$

## Key concepts

• To solve a related rates problem, first draw a picture that illustrates the relationship between the two or more related quantities that are changing with respect to time.
• In terms of the quantities, state the information given and the rate to be found.
• Find an equation relating the quantities.
• Use differentiation, applying the chain rule as necessary, to find an equation that relates the rates.
• Be sure not to substitute a variable quantity for one of the variables until after finding an equation relating the rates.

For the following exercises, find the quantities for the given equation.

Find $\frac{dy}{dt}$ at $x=1$ and $y={x}^{2}+3$ if $\frac{dx}{dt}=4.$

$8$

Find $\frac{dx}{dt}$ at $x=-2$ and $y=2{x}^{2}+1$ if $\frac{dy}{dt}=-1.$

Find $\frac{dz}{dt}$ at $\left(x,y\right)=\left(1,3\right)$ and ${z}^{2}={x}^{2}+{y}^{2}$ if $\frac{dx}{dt}=4$ and $\frac{dy}{dt}=3.$

$\frac{13}{\sqrt{10}}$

For the following exercises, sketch the situation if necessary and used related rates to solve for the quantities.

[T] If two electrical resistors are connected in parallel, the total resistance (measured in ohms, denoted by the Greek capital letter omega, $\text{Ω}\right)$ is given by the equation $\frac{1}{R}=\frac{1}{{R}_{1}}+\frac{1}{{R}_{2}}.$ If ${R}_{1}$ is increasing at a rate of $0.5\phantom{\rule{0.2em}{0ex}}\text{Ω}\text{/}\text{min}$ and ${R}_{2}$ decreases at a rate of $1.1\text{Ω/min},$ at what rate does the total resistance change when ${R}_{1}=20\text{Ω}$ and ${R}_{2}=50\text{Ω}\text{/}\text{min}?$

A 10-ft ladder is leaning against a wall. If the top of the ladder slides down the wall at a rate of 2 ft/sec, how fast is the bottom moving along the ground when the bottom of the ladder is 5 ft from the wall?

$2\sqrt{3}$ ft/sec

A 25-ft ladder is leaning against a wall. If we push the ladder toward the wall at a rate of 1 ft/sec, and the bottom of the ladder is initially $20\phantom{\rule{0.2em}{0ex}}\text{ft}$ away from the wall, how fast does the ladder move up the wall $5\phantom{\rule{0.2em}{0ex}}\text{sec}$ after we start pushing?

f(x) = x-2 g(x) = 3x + 5 fog(x)? f(x)/g(x)
fog(x)= f(g(x)) = x-2 = 3x+5-2 = 3x+3 f(x)/g(x)= x-2/3x+5
diron
pweding paturo nsa calculus?
jimmy
how to use fundamental theorem to solve exponential
find the bounded area of the parabola y^2=4x and y=16x
what is absolute value means?
Chicken nuggets
Hugh
🐔
MM
🐔🦃 nuggets
MM
(mathematics) For a complex number a+bi, the principal square root of the sum of the squares of its real and imaginary parts, √a2+b2 . Denoted by | |. The absolute value |x| of a real number x is √x2 , which is equal to x if x is non-negative, and −x if x is negative.
Ismael
find integration of loge x
find the volume of a solid about the y-axis, x=0, x=1, y=0, y=7+x^3
how does this work
Can calculus give the answers as same as other methods give in basic classes while solving the numericals?
log tan (x/4+x/2)
Rohan
Rohan
y=(x^2 + 3x).(eipix)
Claudia
Ismael
A Function F(X)=Sinx+cosx is odd or even?
neither
David
Neither
Lovuyiso
f(x)=1/1+x^2 |=[-3,1]
apa itu?
fauzi
determine the area of the region enclosed by x²+y=1,2x-y+4=0
Hi
MP
Hi too
Vic
hello please anyone with calculus PDF should share
Which kind of pdf do you want bro?
Aftab
hi
Abdul
can I get calculus in pdf
Abdul
explain for me
Usman
How to use it to slove fraction
Hello please can someone tell me the meaning of this group all about, yes I know is calculus group but yet nothing is showing up
Shodipo
You have downloaded the aplication Calculus Volume 1, tackling about lessons for (mostly) college freshmen, Calculus 1: Differential, and this group I think aims to let concerns and questions from students who want to clarify something about the subject. Well, this is what I guess so.
Jean
Im not in college but this will still help
nothing
how en where can u apply it
Migos
how can we scatch a parabola graph
Ok
Endalkachew
how can I solve differentiation?
with the help of different formulas and Rules. we use formulas according to given condition or according to questions
CALCULUS
For example any questions...
CALCULUS
v=(x,y) وu=(x,y ) ∂u/∂x* ∂x/∂u +∂v/∂x*∂x/∂v=1
log tan (x/4+x/2)
Rohan
what is the procedures in solving number 1?