<< Chapter < Page Chapter >> Page >
  • Express changing quantities in terms of derivatives.
  • Find relationships among the derivatives in a given problem.
  • Use the chain rule to find the rate of change of one quantity that depends on the rate of change of other quantities.

We have seen that for quantities that are changing over time, the rates at which these quantities change are given by derivatives. If two related quantities are changing over time, the rates at which the quantities change are related. For example, if a balloon is being filled with air, both the radius of the balloon and the volume of the balloon are increasing. In this section, we consider several problems in which two or more related quantities are changing and we study how to determine the relationship between the rates of change of these quantities.

In many real-world applications, related quantities are changing with respect to time. For example, if we consider the balloon example again, we can say that the rate of change in the volume, V , is related to the rate of change in the radius, r . In this case, we say that d V d t and d r d t are related rates    because V is related to r . Here we study several examples of related quantities that are changing with respect to time and we look at how to calculate one rate of change given another rate of change.

Inflating a balloon

A spherical balloon is being filled with air at the constant rate of 2 cm 3 / sec ( [link] ). How fast is the radius increasing when the radius is 3 cm ?

Three balloons are shown at Times 1, 2, and 3. These balloons increase in volume and radius as time increases.
As the balloon is being filled with air, both the radius and the volume are increasing with respect to time.

The volume of a sphere of radius r centimeters is

V = 4 3 π r 3 cm 3 .

Since the balloon is being filled with air, both the volume and the radius are functions of time. Therefore, t seconds after beginning to fill the balloon with air, the volume of air in the balloon is

V ( t ) = 4 3 π [ r ( t ) ] 3 cm 3 .

Differentiating both sides of this equation with respect to time and applying the chain rule, we see that the rate of change in the volume is related to the rate of change in the radius by the equation

V ( t ) = 4 π [ r ( t ) ] 2 r ( t ) .

The balloon is being filled with air at the constant rate of 2 cm 3 /sec, so V ( t ) = 2 cm 3 / sec . Therefore,

2 cm 3 / sec = ( 4 π [ r ( t ) ] 2 cm 2 ) · ( r ( t ) cm/s ) ,

which implies

r ( t ) = 1 2 π [ r ( t ) ] 2 cm/sec .

When the radius r = 3 cm,

r ( t ) = 1 18 π cm/sec .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

What is the instantaneous rate of change of the radius when r = 6 cm ?

1 72 π cm/sec , or approximately 0.0044 cm/sec

Got questions? Get instant answers now!

Before looking at other examples, let’s outline the problem-solving strategy we will be using to solve related-rates problems.

Problem-solving strategy: solving a related-rates problem

  1. Assign symbols to all variables involved in the problem. Draw a figure if applicable.
  2. State, in terms of the variables, the information that is given and the rate to be determined.
  3. Find an equation relating the variables introduced in step 1.
  4. Using the chain rule, differentiate both sides of the equation found in step 3 with respect to the independent variable. This new equation will relate the derivatives.
  5. Substitute all known values into the equation from step 4, then solve for the unknown rate of change.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask