<< Chapter < Page Chapter >> Page >
An image of two graphs. The first graph is of “y = f(x)”, which is a curved increasing function, that increases at a faster rate as x increases. The point (a, b) is on the graph of the function in the first quadrant. The second graph also graphs “y = f(x)” with the point (a, b), but also graphs the function “y = f inverse (x)”, an increasing curved function, that increases at a slower rate as x increases. This function includes the point (b, a). In addition to the two functions, there is a diagonal dotted line potted with the equation “y =x”, which shows that “f(x)” and “f inverse (x)” are mirror images about the line “y =x”.
(a) The graph of this function f shows point ( a , b ) on the graph of f . (b) Since ( a , b ) is on the graph of f , the point ( b , a ) is on the graph of f −1 . The graph of f −1 is a reflection of the graph of f about the line y = x .

Sketching graphs of inverse functions

For the graph of f in the following image, sketch a graph of f −1 by sketching the line y = x and using symmetry. Identify the domain and range of f −1 .

An image of a graph. The x axis runs from -2 to 2 and the y axis runs from 0 to 2. The graph is of the function “f(x) = square root of (x +2)”, an increasing curved function. The function starts at the point (-2, 0). The x intercept is at (-2, 0) and the y intercept is at the approximate point (0, 1.4).

Reflect the graph about the line y = x . The domain of f −1 is [ 0 , ) . The range of f −1 is [ −2 , ) . By using the preceding strategy for finding inverse functions, we can verify that the inverse function is f −1 ( x ) = x 2 2 , as shown in the graph.

An image of a graph. The x axis runs from -2 to 2 and the y axis runs from -2 to 2. The graph is of two functions. The first function is “f(x) = square root of (x +2)”, an increasing curved function. The function starts at the point (-2, 0). The x intercept is at (-2, 0) and the y intercept is at the approximate point (0, 1.4). The second function is “f inverse (x) = (x squared) -2”, an increasing curved function that starts at the point (0, -2). The x intercept is at the approximate point (1.4, 0) and the y intercept is at the point (0, -2). In addition to the two functions, there is a diagonal dotted line potted with the equation “y =x”, which shows that “f(x)” and “f inverse (x)” are mirror images about the line “y =x”.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Sketch the graph of f ( x ) = 2 x + 3 and the graph of its inverse using the symmetry property of inverse functions.


An image of a graph. The x axis runs from -3 to 4 and the y axis runs from -3 to 5. The graph is of two functions. The first function is “f(x) = 2x +3”, an increasing straight line function. The function has an x intercept at (-1.5, 0) and a y intercept at (0, 3). The second function is “f inverse (x) = (x - 3)/2”, an increasing straight line function, which increases at a slower rate than the first function. The function has an x intercept at (3, 0) and a y intercept at (0, -1.5). In addition to the two functions, there is a diagonal dotted line potted with the equation “y =x”, which shows that “f(x)” and “f inverse (x)” are mirror images about the line “y =x”.

Got questions? Get instant answers now!

Restricting domains

As we have seen, f ( x ) = x 2 does not have an inverse function because it is not one-to-one. However, we can choose a subset of the domain of f such that the function is one-to-one. This subset is called a restricted domain    . By restricting the domain of f , we can define a new function g such that the domain of g is the restricted domain of f and g ( x ) = f ( x ) for all x in the domain of g . Then we can define an inverse function for g on that domain. For example, since f ( x ) = x 2 is one-to-one on the interval [ 0 , ) , we can define a new function g such that the domain of g is [ 0 , ) and g ( x ) = x 2 for all x in its domain. Since g is a one-to-one function, it has an inverse function, given by the formula g −1 ( x ) = x . On the other hand, the function f ( x ) = x 2 is also one-to-one on the domain ( , 0 ] . Therefore, we could also define a new function h such that the domain of h is ( , 0 ] and h ( x ) = x 2 for all x in the domain of h . Then h is a one-to-one function and must also have an inverse. Its inverse is given by the formula h −1 ( x ) = x ( [link] ).

An image of two graphs. Both graphs have an x axis that runs from -2 to 5 and a y axis that runs from -2 to 5. The first graph is of two functions. The first function is “g(x) = x squared”, an increasing curved function that starts at the point (0, 0). This function increases at a faster rate for larger values of x. The second function is “g inverse (x) = square root of x”, an increasing curved function that starts at the point (0, 0). This function increases at a slower rate for larger values of x. The first function is “h(x) = x squared”, a decreasing curved function that ends at the point (0, 0). This function decreases at a slower rate for larger values of x. The second function is “h inverse (x) = -(square root of x)”, an increasing curved function that starts at the point (0, 0). This function decreases at a slower rate for larger values of x. In addition to the two functions, there is a diagonal dotted line potted with the equation “y =x”, which shows that “f(x)” and “f inverse (x)” are mirror images about the line “y =x”.
(a) For g ( x ) = x 2 restricted to [ 0 , ) , g −1 ( x ) = x . (b) For h ( x ) = x 2 restricted to ( , 0 ] , h −1 ( x ) = x .

Restricting the domain

Consider the function f ( x ) = ( x + 1 ) 2 .

  1. Sketch the graph of f and use the horizontal line test to show that f is not one-to-one.
  2. Show that f is one-to-one on the restricted domain [ −1 , ) . Determine the domain and range for the inverse of f on this restricted domain and find a formula for f −1 .
  1. The graph of f is the graph of y = x 2 shifted left 1 unit. Since there exists a horizontal line intersecting the graph more than once, f is not one-to-one.
    An image of a graph. The x axis runs from -6 to 6 and the y axis runs from -2 to 10. The graph is of the function “f(x) = (x+ 1) squared”, which is a parabola. The function decreases until the point (-1, 0), where it begins it increases. The x intercept is at the point (-1, 0) and the y intercept is at the point (0, 1). There is also a horizontal dotted line plotted on the graph, which crosses through the function at two points.
  2. On the interval [ −1 , ) , f is one-to-one.
    An image of a graph. The x axis runs from -6 to 6 and the y axis runs from -2 to 10. The graph is of the function “f(x) = (x+ 1) squared”, on the interval [1, infinity). The function starts from the point (-1, 0) and increases. The x intercept is at the point (-1, 0) and the y intercept is at the point (0, 1).
    The domain and range of f −1 are given by the range and domain of f , respectively. Therefore, the domain of f −1 is [ 0 , ) and the range of f −1 is [ −1 , ) . To find a formula for f −1 , solve the equation y = ( x + 1 ) 2 for x . If y = ( x + 1 ) 2 , then x = −1 ± y . Since we are restricting the domain to the interval where x −1 , we need ± y 0 . Therefore, x = −1 + y . Interchanging x and y , we write y = −1 + x and conclude that f −1 ( x ) = −1 + x .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Consider f ( x ) = 1 / x 2 restricted to the domain ( , 0 ) . Verify that f is one-to-one on this domain. Determine the domain and range of the inverse of f and find a formula for f −1 .

The domain of f −1 is ( 0 , ) . The range of f −1 is ( , 0 ) . The inverse function is given by the formula f −1 ( x ) = −1 / x .

Got questions? Get instant answers now!

Inverse trigonometric functions

The six basic trigonometric functions are periodic, and therefore they are not one-to-one. However, if we restrict the domain of a trigonometric function to an interval where it is one-to-one, we can define its inverse. Consider the sine function ( [link] ). The sine function is one-to-one on an infinite number of intervals, but the standard convention is to restrict the domain to the interval [ π 2 , π 2 ] . By doing so, we define the inverse sine function on the domain [ −1 , 1 ] such that for any x in the interval [ −1 , 1 ] , the inverse sine function tells us which angle θ in the interval [ π 2 , π 2 ] satisfies sin θ = x . Similarly, we can restrict the domains of the other trigonometric functions to define inverse trigonometric functions    , which are functions that tell us which angle in a certain interval has a specified trigonometric value.

Questions & Answers

find the domain and range of f(x)= 4x-7/x²-6x+8
Nick Reply
find the range of f(x)=(x+1)(x+4)
Jane Reply
-1, -4
Marcia
That's domain. The range is [-9/4,+infinity)
Jacob
If you're using calculus to find the range, you have to find the extrema through the first derivative test and then substitute the x-value for the extrema back into the original equation.
Jacob
Good morning,,, how are you
Harrieta Reply
d/dx{1/y - lny + X^3.Y^5}
mogomotsi Reply
How to identify domain and range
Umar Reply
hello
Akpevwe
He,,
Harrieta
hi
Dr
hello
velocity
I only talk to girls
Dr
women are smart then guys
Dr
Smarter
Adri
sorry
Dr
hi adri ana
Dr
:(
Shun
was up
Dr
hello
Adarsh
is it chatting app?.. I do not see any calculus here. lol
Adarsh
Find the arc length of the graph of f(x) = In (sinx) on the interval [Π/4, Π/2].
mukul Reply
Sand falling freely from a lorry form a conical shape whose height is always equal to one-third the radius of the base. a. How fast is the volume increasing when the radius of the base is (1m) and increasing at the rate of 1/4cm/sec Pls help me solve
ade
show that lim f(x) + lim g(x)=m+l
BARNABAS Reply
list the basic elementary differentials
Chio Reply
Differentiation and integration
Okikiola Reply
yes
Damien
proper definition of derivative
Syed Reply
the maximum rate of change of one variable with respect to another variable
Amdad
terms of an AP is 1/v and the vth term is 1/u show that the sum of uv terms is 1/2(uv+1)
Inembo Reply
what is calculus?
BISWAJIT Reply
calculus is math that studies the change in math, such as the rate and distance,
Tamarcus
what are the topics in calculus
Augustine
what is limit of a function?
Geoffrey Reply
what is x and how x=9.1 take?
Pravin Reply
what is f(x)
Inembo Reply
the function at x
Marc
also known as the y value so I could say y=2x or f(x)= 2x same thing just using functional notation your next question is what is dependent and independent variables. I am Dyslexic but know math and which is which confuses me. but one can vary the x value while y depends on which x you use. also
Marc
up domain and range
Marc
enjoy your work and good luck
Marc
I actually wanted to ask another questions on sets if u dont mind please?
Inembo
I have so many questions on set and I really love dis app I never believed u would reply
Inembo
Hmm go ahead and ask you got me curious too much conversation here
Adri
am sorry for disturbing I really want to know math that's why *I want to know the meaning of those symbols in sets* e.g n,U,A', etc pls I want to know it and how to solve its problems
Inembo
and how can i solve a question like dis *in a group of 40 students, 32 offer maths and 24 offer physics and 4 offer neither maths nor physics , how many offer both maths and physics*
Inembo
next questions what do dy mean by (A' n B^c)^c'
Inembo
The sets help you to define the function. The function is like a magic box where you put inside stuff(numbers or sets) and you get out the stuff but in different shapes (forms).
Adri
I dont understand what you wanna say by (A' n B^c)^c'
Adri
(A' n B (rise to the power of c)) all rise to the power of c
Inembo
Aaaahh
Adri
Ok so the set is formed by vectors and not numbers
Adri
A vector of length n
Adri
But you can make a set out of matrixes as well
Adri
I I don't even understand sets I wat to know d meaning of all d symbolsnon sets
Inembo
Wait what's your math level?
Adri
High-school?
Adri
yes
Inembo
am having big problem understanding sets more than other math topics
Inembo
So f:R->R means that the function takes real numbers and provides real numer. For ex. If f(x) =2x this means if you give to your function a real number like 2,it gives you also a real number 2times2=4
Adri
pls answer this question *in a group of 40 students, 32 offer maths and 24 offer physics and 4 offer neither maths nor physics , how many offer both maths and physics*
Inembo
If you have f:R^n->R^n you give to your function a vector of length n like (a1,a2,...an) where all a1,.. an are reals and gives you also a vector of length n... I don't know if i answering your question. Otherwise on YouTube you havr many videos where they explain it in a simple way
Adri
I would say 24
Adri
Offer both
Adri
Sorry 20
Adri
Actually you have 40 - 4 =36 who offer maths or physics or both.
Adri
I know its 20 but how to prove it
Inembo
You have 32+24=56who offer courses
Adri
56-36=20 who give both courses... I would say that
Adri
solution: In a question involving sets and Venn diagram, the sum of the members of set A + set B - the joint members of both set A and B + the members that are not in sets A or B = the total members of the set. In symbolic form n(A U B) = n(A) + n (B) - n (A and B) + n (A U B)'.
Mckenzie
In the case of sets A and B use the letters m and p to represent the sets and we have: n (M U P) = 40; n (M) = 24; n (P) = 32; n (M and P) = unknown; n (M U P)' = 4
Mckenzie
Now substitute the numerical values for the symbolic representation 40 = 24 + 32 - n(M and P) + 4 Now solve for the unknown using algebra: 40 = 24 + 32+ 4 - n(M and P) 40 = 60 - n(M and P) Add n(M and P), as well, subtract 40 from both sides of the equation to find the answer.
Mckenzie
40 - 40 + n(M and P) = 60 - 40 - n(M and P) + n(M and P) Solution: n(M and P) = 20
Mckenzie
thanks
Inembo
Simpler form: Add the sums of set M, set P and the complement of the union of sets M and P then subtract the number of students from the total.
Mckenzie
n(M and P) = (32 + 24 + 4) - 40 = 60 - 40 = 20
Mckenzie
Practice Key Terms 5

Get the best Calculus volume 1 course in your pocket!





Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask