<< Chapter < Page Chapter >> Page >

Watch an animation of sound entering the outer ear, moving through the ear structure, stimulating cochlear nerve impulses, and eventually sending signals to the temporal lobe.

Higher processing

The inner hair cells are most important for conveying auditory information to the brain. About 90 percent of the afferent neurons carry information from inner hair cells, with each hair cell synapsing with 10 or so neurons. Outer hair cells connect to only 10 percent of the afferent neurons, and each afferent neuron innervates many hair cells. The afferent, bipolar neurons that convey auditory information travel from the cochlea to the medulla, through the pons and midbrain in the brainstem, finally reaching the primary auditory cortex in the temporal lobe.

Vestibular information

The stimuli associated with the vestibular system are linear acceleration (gravity) and angular acceleration and deceleration. Gravity, acceleration, and deceleration are detected by evaluating the inertia on receptive cells in the vestibular system. Gravity is detected through head position. Angular acceleration and deceleration are expressed through turning or tilting of the head.

The vestibular system has some similarities with the auditory system. It utilizes hair cells just like the auditory system, but it excites them in different ways. There are five vestibular receptor organs in the inner ear: the utricle, the saccule, and three semicircular canals. Together, they make up what’s known as the vestibular labyrinth that is shown in [link] . The utricle and saccule respond to acceleration in a straight line, such as gravity. The roughly 30,000 hair cells in the utricle and 16,000 hair cells in the saccule lie below a gelatinous layer, with their stereocilia projecting into the gelatin. Embedded in this gelatin are calcium carbonate crystals—like tiny rocks. When the head is tilted, the crystals continue to be pulled straight down by gravity, but the new angle of the head causes the gelatin to shift, thereby bending the stereocilia. The bending of the stereocilia stimulates the neurons, and they signal to the brain that the head is tilted, allowing the maintenance of balance. It is the vestibular branch of the vestibulocochlear cranial nerve that deals with balance.

This illustration shows the snail shell-shaped cochlea, which widens into the vestibule. Two circular organs, the utricle and the saccule, are located in the vestibule. Three ring-like canals, the horizontal canal, the posterior canal, and the superior canal, extend from the top of the vestibule. Each canal projects in a different direction.
The structure of the vestibular labyrinth is shown. (credit: modification of work by NIH)

The fluid-filled semicircular canals are tubular loops set at oblique angles. They are arranged in three spatial planes. The base of each canal has a swelling that contains a cluster of hair cells. The hairs project into a gelatinous cap called the cupula and monitor angular acceleration and deceleration from rotation. They would be stimulated by driving your car around a corner, turning your head, or falling forward. One canal lies horizontally, while the other two lie at about 45 degree angles to the horizontal axis, as illustrated in [link] . When the brain processes input from all three canals together, it can detect angular acceleration or deceleration in three dimensions. When the head turns, the fluid in the canals shifts, thereby bending stereocilia and sending signals to the brain. Upon cessation accelerating or decelerating—or just moving—the movement of the fluid within the canals slows or stops. For example, imagine holding a glass of water. When moving forward, water may splash backwards onto the hand, and when motion has stopped, water may splash forward onto the fingers. While in motion, the water settles in the glass and does not splash. Note that the canals are not sensitive to velocity itself, but to changes in velocity, so moving forward at 60mph with your eyes closed would not give the sensation of movement, but suddenly accelerating or braking would stimulate the receptors.

Higher processing

Hair cells from the utricle, saccule, and semicircular canals also communicate through bipolar neurons to the cochlear nucleus in the medulla. Cochlear neurons send descending projections to the spinal cord and ascending projections to the pons, thalamus, and cerebellum. Connections to the cerebellum are important for coordinated movements. There are also projections to the temporal cortex, which account for feelings of dizziness; projections to autonomic nervous system areas in the brainstem, which account for motion sickness; and projections to the primary somatosensory cortex, which monitors subjective measurements of the external world and self-movement. People with lesions in the vestibular area of the somatosensory cortex see vertical objects in the world as being tilted. Finally, the vestibular signals project to certain optic muscles to coordinate eye and head movements.

Click through this interactive tutorial to review the parts of the ear and how they function to process sound.

Section summary

Audition is important for territory defense, predation, predator defense, and communal exchanges. The vestibular system, which is not auditory, detects linear acceleration and angular acceleration and deceleration. Both the auditory system and vestibular system use hair cells as their receptors.

Auditory stimuli are sound waves. The sound wave energy reaches the outer ear (pinna, canal, tympanum), and vibrations of the tympanum send the energy to the middle ear. The middle ear bones shift and the stapes transfers mechanical energy to the oval window of the fluid-filled inner ear cochlea. Once in the cochlea, the energy causes the basilar membrane to flex, thereby bending the stereocilia on receptor hair cells. This activates the receptors, which send their auditory neural signals to the brain.

The vestibular system has five parts that work together to provide the sense of direction, thus helping to maintain balance. The utricle and saccule measure head orientation: their calcium carbonate crystals shift when the head is tilted, thereby activating hair cells. The semicircular canals work similarly, such that when the head is turned, the fluid in the canals bends stereocilia on hair cells. The vestibular hair cells also send signals to the thalamus and to somatosensory cortex, but also to the cerebellum, the structure above the brainstem that plays a large role in timing and coordination of movement.

Art connections

[link] Cochlear implants can restore hearing in people who have a nonfunctional cochlear. The implant consists of a microphone that picks up sound. A speech processor selects sounds in the range of human speech, and a transmitter converts these sounds to electrical impulses, which are then sent to the auditory nerve. Which of the following types of hearing loss would not be restored by a cochlear implant?

  1. Hearing loss resulting from absence or loss of hair cells in the organ of Corti.
  2. Hearing loss resulting from an abnormal auditory nerve.
  3. Hearing loss resulting from fracture of the cochlea.
  4. Hearing loss resulting from damage to bones of the middle ear.

[link] B

Got questions? Get instant answers now!

Questions & Answers

what is micro-organism
Jackson Reply
what is the hypothesis
hypothesis is a proposed explanation for a phenomenon
hypothesis is raw materials
what is biology
what does mean stigma
Amira Reply
what is the full of the MOST dangerous disease in the world where one stops sleeping and just dies :Hint ; FFI
God Reply
fatal familial insomnia which affects the thalamus
there are other dangerous diseases like CAD i.e coronary artery disease
what is matter
Thomas Reply
it is any thing that has weight and occupies space
matter is any substances that occupies spaces and has mass
describe photosynthesis
Mavis Reply
What is equilibrium
What is equilibrium
like corporal intern balance right?
on my own understanding is just a balanced state
photosynthesis is the process by which plants and other organisms convert light energy to chemical energy
what is a chromosome?
Wise Reply
Are thread-like structures located inside the nucleus of animal and plant cells.
what are the difference between Biotic community and Ecological nitche.
Ganiyat Reply
what is the celll
A cell is the simplest bit of living matter that exist independently
cell is the basic unit of life
what is ecdysis
what is genetics
Sebastian Reply
The cell is the simplest bit of living matter that can exist independently.
what happenes when the cell of an organism Is removed?
Isaac Reply
The cell will not function properly
what is cell
Maarig Reply
cell is stractural and functional unit of our human body.
The study of cells are referred to as?
Kenneth Reply
what is active transport
johnny Reply
is the movement of molecules through a semi permeable membrane with the use of energy
is the movement of substances across a membrane against the concentration gradient by using energy.
what is living things
Aminu Reply
these are organisms that take in respiratory gases e.g plants and animals
they are organisms that undergoe the various life processes such as growth, respiration, reproduction, excretion etc
what is gland
an organ synthesizes a substance such as hormones or breast milk
Why do plants contain oxygen
Alfonso Reply

Get the best Biology course in your pocket!

Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?