<< Chapter < Page Chapter >> Page >

Erythroblastosis fetalis

This figure shows an umbilical artery and vein passing through the placenta on the top left. The top right panel shows the first exposure to Rh+ antibodies in the mother. The bottom right panel shows the response when the second exposure in the form of another fetus takes place. Textboxes detail the steps in each process.
The first exposure of an Rh mother to Rh + erythrocytes during pregnancy induces sensitization. Anti-Rh antibodies begin to circulate in the mother’s bloodstream. A second exposure occurs with a subsequent pregnancy with an Rh + fetus in the uterus. Maternal anti-Rh antibodies may cross the placenta and enter the fetal bloodstream, causing agglutination and hemolysis of fetal erythrocytes.

A drug known as RhoGAM, short for Rh immune globulin, can temporarily prevent the development of Rh antibodies in the Rh mother, thereby averting this potentially serious disease for the fetus. RhoGAM antibodies destroy any fetal Rh + erythrocytes that may cross the placental barrier. RhoGAM is normally administered to Rh mothers during weeks 26−28 of pregnancy and within 72 hours following birth. It has proven remarkably effective in decreasing the incidence of HDN. Earlier we noted that the incidence of HDN in an Rh + subsequent pregnancy to an Rh mother is about 13–14 percent without preventive treatment. Since the introduction of RhoGAM in 1968, the incidence has dropped to about 0.1 percent in the United States.

Determining abo blood types

Clinicians are able to determine a patient’s blood type quickly and easily using commercially prepared antibodies. An unknown blood sample is allocated into separate wells. Into one well a small amount of anti-A antibody is added, and to another a small amount of anti-B antibody. If the antigen is present, the antibodies will cause visible agglutination of the cells ( [link] ). The blood should also be tested for Rh antibodies.

Cross matching blood types

This figure shows three different red blood cells with different blood types.
This sample of a commercially produced “bedside” card enables quick typing of both a recipient’s and donor’s blood before transfusion. The card contains three reaction sites or wells. One is coated with an anti-A antibody, one with an anti-B antibody, and one with an anti-D antibody (tests for the presence of Rh factor D). Mixing a drop of blood and saline into each well enables the blood to interact with a preparation of type-specific antibodies, also called anti-seras. Agglutination of RBCs in a given site indicates a positive identification of the blood antigens, in this case A and Rh antigens for blood type A + . For the purpose of transfusion, the donor’s and recipient’s blood types must match.

Abo transfusion protocols

To avoid transfusion reactions, it is best to transfuse only matching blood types; that is, a type B + recipient should ideally receive blood only from a type B + donor and so on. That said, in emergency situations, when acute hemorrhage threatens the patient’s life, there may not be time for cross matching to identify blood type. In these cases, blood from a universal donor    —an individual with type O blood—may be transfused. Recall that type O erythrocytes do not display A or B antigens. Thus, anti-A or anti-B antibodies that might be circulating in the patient’s blood plasma will not encounter any erythrocyte surface antigens on the donated blood and therefore will not be provoked into a response. One problem with this designation of universal donor is if the O individual had prior exposure to Rh antigen, Rh antibodies may be present in the donated blood. Also, introducing type O blood into an individual with type A, B, or AB blood will nevertheless introduce antibodies against both A and B antigens, as these are always circulating in the type O blood plasma. This may cause problems for the recipient, but because the volume of blood transfused is much lower than the volume of the patient’s own blood, the adverse effects of the relatively few infused plasma antibodies are typically limited. Rh factor also plays a role. If Rh individuals receiving blood have had prior exposure to Rh antigen, antibodies for this antigen may be present in the blood and trigger agglutination to some degree. Although it is always preferable to cross match a patient’s blood before transfusing, in a true life-threatening emergency situation, this is not always possible, and these procedures may be implemented.

A patient with blood type AB + is known as the universal recipient    . This patient can theoretically receive any type of blood, because the patient’s own blood—having both A and B antigens on the erythrocyte surface—does not produce anti-A or anti-B antibodies. In addition, an Rh + patient can receive both Rh + and Rh blood. However, keep in mind that the donor’s blood will contain circulating antibodies, again with possible negative implications. [link] summarizes the blood types and compatibilities.

At the scene of multiple-vehicle accidents, military engagements, and natural or human-caused disasters, many victims may suffer simultaneously from acute hemorrhage, yet type O blood may not be immediately available. In these circumstances, medics may at least try to replace some of the volume of blood that has been lost. This is done by intravenous administration of a saline solution that provides fluids and electrolytes in proportions equivalent to those of normal blood plasma. Research is ongoing to develop a safe and effective artificial blood that would carry out the oxygen-carrying function of blood without the RBCs, enabling transfusions in the field without concern for incompatibility. These blood substitutes normally contain hemoglobin- as well as perfluorocarbon-based oxygen carriers.

Abo blood group

This table shows the different blood types, the antibodies in plasma, the antigens in the red blood cell, and the blood compatible blood types in an emergency.
This chart summarizes the characteristics of the blood types in the ABO blood group. See the text for more on the concept of a universal donor or recipient.

Chapter review

Antigens are nonself molecules, usually large proteins, which provoke an immune response. In transfusion reactions, antibodies attach to antigens on the surfaces of erythrocytes and cause agglutination and hemolysis. ABO blood group antigens are designated A and B. People with type A blood have A antigens on their erythrocytes, whereas those with type B blood have B antigens. Those with AB blood have both A and B antigens, and those with type O blood have neither A nor B antigens. The blood plasma contains preformed antibodies against the antigens not present on a person’s erythrocytes.

A second group of blood antigens is the Rh group, the most important of which is Rh D. People with Rh blood do not have this antigen on their erythrocytes, whereas those who are Rh + do. About 85 percent of Americans are Rh + . When a woman who is Rh becomes pregnant with an Rh + fetus, her body may begin to produce anti-Rh antibodies. If she subsequently becomes pregnant with a second Rh + fetus and is not treated preventively with RhoGAM, the fetus will be at risk for an antigen-antibody reaction, including agglutination and hemolysis. This is known as hemolytic disease of the newborn.

Cross matching to determine blood type is necessary before transfusing blood, unless the patient is experiencing hemorrhage that is an immediate threat to life, in which case type O blood may be transfused.

References

American Red Cross (US). Blood types [Internet]. c2013 [cited 2013 Apr 3]. Available from: (External Link) 2013

Questions & Answers

wat are e constituents of blood
marybertiny Reply
Can a cell be destroyed by the bacteria
Makhanya Reply
anamia. because of loss of blood
fon Reply
Name the element which is liquid
Sandeep Reply
hg
RC
CO2
Maureen
Bromine
Aaron
what is the dept of respiration plz?
Maureen
Maureen where are you from
Omokaro
mercury
VANESSA
bromine
VANESSA
why is the baby formed in the uterus n not else where?
Ekali Reply
you may help me ,to know why
mar
lo i am inn
mar
the womb is to protect the baby because inside the womb the lay in a fluid called the amniotic fluid which keeps the baby warm and it also have the placenta which the baby feeds from
Maureen
atom, molecules, organelle, cell, tissue, organ, organ system
Cheila Reply
sub atom atom molecular molecules and cells.
Advertus
cells structural level.
Advertus
what is microorganisms I am a laboratory student.
Advertus
a small organism
Rahbliss
small organism that can only be seen under a microscope
Maureen
i am just interested to be part of ,to learn
mar
explain why is it that old peoples as from the age of 60 usually have eye problems?
Kenn Reply
most old people suffere eye problems.because of short sight where individuals with this kind of problems see only near objects clearly but not distance objects, this is cause by elongated eyeball so light from distance is focus infront the retina so the image on the retina is blurred .
Munyah
plasma DNA cytoplasm Ribosome
Pearl Reply
cell, tissue,organ, organ systems,organism
Pearl Reply
cell is the build block of Life
Pearl
also a smallest unit of life
Frankline
sure..
Pearl
consistsof cytoplsm enclosed with in a membrane which contains many biomolecules such as proteins and nucleic acids
Frankline
differences in the effects of infection by HIV and influenza A virus on host genetic variability.
Yo Reply
i dont know
Ubah
hiv is direct contact of blood or body fluid and if not treated can break down the immune system faster and lead to acids with complications of pneumonia skin infections inflammation of the brain etc.while influenza A is a air borne virus which can cause the common cold pain fever and can be cured
Maureen
A.I.D.S
Maureen
suggest bioingormatics research article plz
peermehirali
what makes the heart to pumps blood?
Jamer Reply
sa node
Ubah
i do think its the nerve tranmission to the brain
Frankline
The contracting and relaxing of the atria and vertricles but the electrical system of the heart is what makes this possible.
keynia
yes which is called autorhymicity
Maureen
Yes,,by sucking blood leading to the weakening of cells,and finally it will be destroyed....
R0se
adrenoline action in brains
Frankline Reply
please describe the human heart brefly
Shah Reply
the size of the heart is like a fist. it has four chambers. the left and right upper atrium which push blood in the lower left and right ventricles which in turns pump blood to the lungs or the rest of the body.
Maureen
how do u prove it
Frankline
Maureen is correct ,
Davis
right
Kenn
right
Ubah
hi
horyaal
mxaa lahayaa
horyaal
What is housing?
Baldwin Reply
is where located you
Ubah
Hi, my name is Syedul Mostafa from Bangladesh Refugees camp. I would like to study under your.
Mostafa Reply

Get the best Human biology course in your pocket!





Source:  OpenStax, Human biology. OpenStax CNX. Dec 01, 2015 Download for free at http://legacy.cnx.org/content/col11903/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Human biology' conversation and receive update notifications?

Ask