<< Chapter < Page Chapter >> Page >

Protein structure

As discussed earlier, the shape of a protein is critical to its function. To understand how the protein gets its final shape or conformation, we need to understand the four levels of protein structure: primary, secondary, tertiary, and quaternary ( [link] ).

The unique sequence and number of amino acids in a polypeptide chain is its primary structure. The unique sequence for every protein is ultimately determined by the gene that encodes the protein. Any change in the gene sequence may lead to a different amino acid being added to the polypeptide chain, causing a change in protein structure and function. In sickle cell anemia, the hemoglobin β chain has a single amino acid substitution, causing a change in both the structure and function of the protein. What is most remarkable to consider is that a hemoglobin molecule is made up of two alpha chains and two beta chains that each consist of about 150 amino acids. The molecule, therefore, has about 600 amino acids. The structural difference between a normal hemoglobin molecule and a sickle cell molecule—that dramatically decreases life expectancy in the affected individuals—is a single amino acid of the 600.

Because of this change of one amino acid in the chain, the normally biconcave, or disc-shaped, red blood cells assume a crescent or “sickle” shape, which clogs arteries. This can lead to a myriad of serious health problems, such as breathlessness, dizziness, headaches, and abdominal pain for those who have this disease.

Folding patterns resulting from interactions between the non-R group portions of amino acids give rise to the secondary structure of the protein. The most common are the alpha (α)-helix and beta (β)-pleated sheet structures. Both structures are held in shape by hydrogen bonds. In the alpha helix, the bonds form between every fourth amino acid and cause a twist in the amino acid chain.

In the β-pleated sheet, the “pleats” are formed by hydrogen bonding between atoms on the backbone of the polypeptide chain. The R groups are attached to the carbons, and extend above and below the folds of the pleat. The pleated segments align parallel to each other, and hydrogen bonds form between the same pairs of atoms on each of the aligned amino acids. The α-helix and β-pleated sheet structures are found in many globular and fibrous proteins.

The unique three-dimensional structure of a polypeptide is known as its tertiary structure. This structure is caused by chemical interactions between various amino acids and regions of the polypeptide. Primarily, the interactions among R groups create the complex three-dimensional tertiary structure of a protein. There may be ionic bonds formed between R groups on different amino acids, or hydrogen bonding beyond that involved in the secondary structure. When protein folding takes place, the hydrophobic R groups of nonpolar amino acids lay in the interior of the protein, whereas the hydrophilic R groups lay on the outside. The former types of interactions are also known as hydrophobic interactions.

Questions & Answers

must all prokaryotic cells posses a cell wall?
chris Reply
what is biology?
Cathy Reply
biology is basically the study of life
that's true
it's the study of living things
What is a celiac disease
Falase Reply
distinguish between properties and characteristics
Elee Reply
what are organelles
organelles are substances that makes up a cell
what is biology
Prevail Reply
biology is science that studies life
it's the study of living and non living things
now that we have an estimate for the diameter of the cell.what estimate can we make about the volume of the cell?
faxhood Reply
why too much insulin result in low blood sugar
Leri Reply
For example, too much exercise can cost you to lose to much weight. Too much insulin will pull to much sugar out of your systemic system into your cells.
difference between DNA and RNA
Eyitayo Reply
DNA is deoxyribonuclaic acid. Deoxy refers to a lack of oxygen. The Ribose moity is missing an OH group. I think it is missing from the second C of the ring. RNA is ribonucleic acid. DNA has our genetic code in on it. RNA is translated from DNA and carries the blue print for protein synthesis.
The OH group on RNA prevents it from being reactive. But it is very unstable though. Would you want such a power tool floating around in your body, no. And you have three types of RNA: mRNA, tRNA and rRNA. Please let me know it this helped?😄
Eric answered this question perfectly
what determines the aeration level in the soil
Shola Reply
what is homeostasis?
Sarita Reply
It means balance in a biological system.
What is biology
Don Reply
Biology z the study of life
what's biology
biology is the study of living nd none living organism
Biology is the study of life
yes Sir
what's cell biology
biology is the study of life
Biology is a science subject that deals with the study of living things and how they interact with there environment
what is asexual reproduction,?
Awoi Reply
A type of reproduction which does not involve the fusion of gametes or a change in the number of chromosomes
Reproduction without sex... In which form a single organism or cell makes a copy of itself.
Please explain the concept of mitosis and meiosis
I guess you could use it for study buddies and brushing up on what you need to
what is mitosis
Asexual reproduction?
why pepsin and trypsin released in active form?
mitosis is the type cell division in which two daughter cells have same no. of chormosomes
chromosome number remains the same in mitosis
Yrr help me.
Physical chemistry..... Koi h jo mujhe physical chem ki notes send kr ske
what is asexual reproduction
what makes golgi body in plants
Abdulkareem Reply
name the membrane of the plants
how can turners syndrome be corrected before birth
which animal survive from being preyed just because of being humble, slow, and not aggressive
Plants have golgi body's also. Plants are eukaryotic cells. And membrane bound organelles are a characteristic of eukaryotic cells. Moreover golgi body's are creatted from the ER. Also do not forget plants have plastids and animal cells do not.
During organs transplantation, the organs cannot be taken from just anybody since the graft would be rejected sooner or later due to
Liter Reply
Non-MHC compatibility on the organ and an attack from the patient's immune system.
what makes golgi body in plants
why trypsin and pepsin released in active form
Let us remember MHC'S on our cells. This is how our cells determine self from n o n s e l f. Transplanted tissue has to have a certain amount markers. These have to match to the recipiant's markers. Even with this, immunosuppresant medacine is prescribed to the recipient.
Even with these measures the body may still reject the transport. This can occur even after the recipient excepting the transport for some time.
what is integument system
Joy Reply
This system is our skin. This includes the skin lining our alimentary system which includes the tissue from our mouth to our anus. Our skin is our largest organ system. It is mostly made up of epithelial tissue.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, Concepts of biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11487/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of biology' conversation and receive update notifications?