<< Chapter < Page Chapter >> Page >

When a pathogen is recognized as foreign, chemicals called cytokines are released. A cytokine    is a chemical messenger that regulates cell differentiation (form and function), proliferation (production), and gene expression to produce a variety of immune responses. Approximately 40 types of cytokines exist in humans. In addition to being released from white blood cells after pathogen recognition, cytokines are also released by the infected cells and bind to nearby uninfected cells, inducing those cells to release cytokines. This positive feedback loop results in a burst of cytokine production.

One class of early-acting cytokines is the interferons, which are released by infected cells as a warning to nearby uninfected cells. An interferon    is a small protein that signals a viral infection to other cells. The interferons stimulate uninfected cells to produce compounds that interfere with viral replication. Interferons also activate macrophages and other cells.

The inflammatory response and phagocytosis

The first cytokines to be produced encourage inflammation    , a localized redness, swelling, heat, and pain. Inflammation is a response to physical trauma, such as a cut or a blow, chemical irritation, and infection by pathogens (viruses, bacteria, or fungi). The chemical signals that trigger an inflammatory response enter the extracellular fluid and cause capillaries to dilate (expand) and capillary walls to become more permeable, or leaky. The serum and other compounds leaking from capillaries cause swelling of the area, which in turn causes pain. Various kinds of white blood cells are attracted to the area of inflammation. The types of white blood cells that arrive at an inflamed site depend on the nature of the injury or infecting pathogen. For example, a neutrophil    is an early arriving white blood cell that engulfs and digests pathogens. Neutrophils are the most abundant white blood cells of the immune system ( [link] ). Macrophages follow neutrophils and take over the phagocytosis function and are involved in the resolution of an inflamed site, cleaning up cell debris and pathogens.

 Illustration shows a capillary near the surface of skin that has a cut in it. Bacteria have penetrated the skin around the cut. In response, mass cells in the lower part of the skin tissue release histamines, and dendritic cells release cytokines. The histamines cause the capillary to become permeable. Neutrophils and monocytes exit the capillary into the damaged skin. Both the neutrophil and macrophage release cytokines and consumes bacteria by phagocytosis.
White blood cells (leukocytes) release chemicals to stimulate the inflammatory response following a cut in the skin.

Cytokines also send feedback to cells of the nervous system to bring about the overall symptoms of feeling sick, which include lethargy, muscle pain, and nausea. Cytokines also increase the core body temperature, causing a fever. The elevated temperatures of a fever inhibit the growth of pathogens and speed up cellular repair processes. For these reasons, suppression of fevers should be limited to those that are dangerously high.

Concept in action

Check out this 23-second, stop-motion video showing a neutrophil that searches and engulfs fungus spores during an elapsed time of 79 minutes.

Natural killer cells

A lymphocyte    is a white blood cell that contains a large nucleus ( [link] ). Most lymphocytes are associated with the adaptive immune response, but infected cells are identified and destroyed by natural killer cells, the only lymphocytes of the innate immune system. A natural killer (NK) cell    is a lymphocyte that can kill cells infected with viruses (or cancerous cells). NK cells identify intracellular infections, especially from viruses, by the altered expression of major histocompatibility class (MHC) I molecules on the surface of infected cells. MHC class I molecules are proteins on the surfaces of all nucleated cells that provide a sample of the cell’s internal environment at any given time. Unhealthy cells, whether infected or cancerous, display an altered MHC class I complement on their cell surfaces.

Micrograph shows a round cell with a large nucleus occupying more than half of the cell.
Lymphocytes, such as NK cells, are characterized by their large nuclei that actively absorb Wright stain and therefore appear dark colored under a microscope. (credit: scale-bar data from Matt Russell)

After the NK cell detects an infected or tumor cell, it induces programmed cell death, or apoptosis. Phagocytic cells then come along and digest the cell debris left behind. NK cells are constantly patrolling the body and are an effective mechanism for controlling potential infections and preventing cancer progression. The various types of immune cells are shown in [link] .

 Illustration shows several innate immunity cells. Mast cells have an abundance of cytoplasmic granules and an irregular nucleus. Natural killer cells and neutrophils are filled with granules. Neutrophils have a multi-lobed nucleus. Macrophages are irregular in shape, with a round nucleus.
Cells involved in the innate immune response include mast cells, natural killer cells, and white blood cells, such as monocytes, macrophages and neutrophils.


An array of approximately 20 types of proteins, called a complement system    , is also activated by infection or the activity of the cells of the adaptive immune system and functions to destroy extracellular pathogens. Liver cells and macrophages synthesize inactive forms of complement proteins continuously; these proteins are abundant in the blood serum and are capable of responding immediately to infecting microorganisms. The complement system is so named because it is complementary to the innate and adaptive immune system. Complement proteins bind to the surfaces of microorganisms and are particularly attracted to pathogens that are already tagged by the adaptive immune system. This “tagging” involves the attachment of specific proteins called antibodies (discussed in detail later) to the pathogen. When they attach, the antibodies change shape providing a binding site for one of the complement proteins. After the first few complement proteins bind, a cascade of binding in a specific sequence of proteins follows in which the pathogen rapidly becomes coated in complement proteins.

Complement proteins perform several functions, one of which is to serve as a marker to indicate the presence of a pathogen to phagocytic cells and enhance engulfment. Certain complement proteins can combine to open pores in microbial cell membranes and cause lysis of the cells.

Section summary

The innate immune system consists first of physical and chemical barriers to infection including the skin and mucous membranes and their secretions, ciliated surfaces, and body hairs. The second line of defense is an internal defense system designed to counter pathogenic threats that bypass the physical and chemical barriers of the body. Using a combination of cellular and molecular responses, the innate immune system identifies the nature of a pathogen and responds with inflammation, phagocytosis, cytokine release, destruction by NK cells, or the complement system.

Questions & Answers

What is Atoms
Daprince Reply
what's bulbourethral gland
Eduek Reply
urine is formed in the nephron of the renal medulla in the kidney. It starts from filtration, then selective reabsorption and finally secretion
onuoha Reply
what is heart
Konadu Reply
how is urine formed in human
how is urine formed in human
what is the diference between a cavity and a canal
Pelagie Reply
what is the causative agent of malaria
malaria is caused by an insect called mosquito.
Malaria is cause by female anopheles mosquito
Malaria is caused by plasmodium Female anopheles mosquitoe is d carrier
a canal is more needed in a root but a cavity is a bad effect
what are pathogens
Don Reply
In biology, a pathogen (Greek: πάθος pathos "suffering", "passion" and -γενής -genēs "producer of") in the oldest and broadest sense, is anything that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ. The term pathogen came into use in the 1880s.[1][2
A virus
Definition of respiration
Muhsin Reply
respiration is the process in which we breath in oxygen and breath out carbon dioxide
how are lungs work
where does digestion begins
Achiri Reply
in the mouth
what are the functions of follicle stimulating harmones?
Rashima Reply
stimulates the follicle to release the mature ovum into the oviduct
what are the functions of Endocrine and pituitary gland
endocrine secrete hormone and regulate body process
while pituitary gland is an example of endocrine system and it's found in the Brain
what's biology?
Egbodo Reply
Biology is the study of living organisms, divided into many specialized field that cover their morphology, physiology,anatomy, behaviour,origin and distribution.
biology is the study of life.
1-chemical level 2-cellular level 3-organ system level 4-tissue level 5-organism level 6-molecules
Dennis Reply
when cell are dead in any part of the body what happen to that place
Dennis Reply
describe the Krebs cycle
Lian Reply
the sequence of reactions by which most living cells generate energy during the process of aerobic respiration. It takes place in the mitochondria, consuming oxygen, producing carbon dioxide and water as waste products, and converting ADP to energy
Andy is 1.0 m tall and weighs 45kg Bmi= weight / Height (squared) what's his bmi? Is it high or low?
zafirah Reply
where did our atmosphere came from
Thomas Reply
Our atmospher came from outer space.

Get the best Human biology course in your pocket!

Source:  OpenStax, Human biology. OpenStax CNX. Dec 01, 2015 Download for free at http://legacy.cnx.org/content/col11903/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Human biology' conversation and receive update notifications?