<< Chapter < Page Chapter >> Page >

Two mechanisms exist for the transport of small-molecular weight material and macromolecules. Primary active transport moves ions across a membrane and creates a difference in charge across that membrane. The primary active transport system uses ATP to move a substance, such as an ion, into the cell, and often at the same time, a second substance is moved out of the cell. The sodium-potassium pump, an important pump in animal cells, expends energy to move potassium ions into the cell and a different number of sodium ions out of the cell ( [link] ). The action of this pump results in a concentration and charge difference across the membrane.

 This illustration shows the sodium-potassium pump. Initially, the pump’s opening faces the cytoplasm, where three sodium ions bind to it. The pump hydrolyzes ATP to ADP and, as a result, undergoes a conformational change. The sodium ions are released into the extracellular space. Two potassium ions from the extracellular space now bind the pump, which changes conformation again, releasing the potassium ions into the cytoplasm.
The sodium-potassium pump move potassium and sodium ions across the plasma membrane. (credit: modification of work by Mariana Ruiz Villarreal)

Secondary active transport describes the movement of material using the energy of the electrochemical gradient established by primary active transport. Using the energy of the electrochemical gradient created by the primary active transport system, other substances such as amino acids and glucose can be brought into the cell through membrane channels. ATP itself is formed through secondary active transport using a hydrogen ion gradient in the mitochondrion.

Endocytosis

Endocytosis is a type of active transport that moves particles, such as large molecules, parts of cells, and even whole cells, into a cell. There are different variations of endocytosis, but all share a common characteristic: The plasma membrane of the cell invaginates, forming a pocket around the target particle. The pocket pinches off, resulting in the particle being contained in a newly created vacuole that is formed from the plasma membrane.

Three types of endocytosis are shown: (a) phagocytosis, (b) pinocytosis, and (c) receptor-mediated endocytosis. Part a shows the plasma membrane forming a pocket around a particle in the extracellular fluid. The membrane subsequently engulfs the particle, which becomes trapped in a vacuole. Part b shows a plasma membrane forming a pocket around fluid in the extracellular fluid. The membrane subsequently engulfs the fluid, which becomes trapped in a vacuole. Part c shows a part of the plasma membrane that is clathrin-coated on the cytoplasmic side and has receptors on the extracellular side. The receptors bind a substance, then pinch off to form a coated vesicle.
Three variations of endocytosis are shown. (a) In one form of endocytosis, phagocytosis, the cell membrane surrounds the particle and pinches off to form an intracellular vacuole. (b) In another type of endocytosis, pinocytosis, the cell membrane surrounds a small volume of fluid and pinches off, forming a vesicle. (c) In receptor-mediated endocytosis, uptake of substances by the cell is targeted to a single type of substance that binds at the receptor on the external cell membrane. (credit: modification of work by Mariana Ruiz Villarreal)

Phagocytosis is the process by which large particles, such as cells, are taken in by a cell. For example, when microorganisms invade the human body, a type of white blood cell called a neutrophil removes the invader through this process, surrounding and engulfing the microorganism, which is then destroyed by the neutrophil ( [link] ).

A variation of endocytosis is called pinocytosis    . This literally means “cell drinking” and was named at a time when the assumption was that the cell was purposefully taking in extracellular fluid. In reality, this process takes in solutes that the cell needs from the extracellular fluid ( [link] ).

A targeted variation of endocytosis employs binding proteins in the plasma membrane that are specific for certain substances ( [link] ). The particles bind to the proteins and the plasma membrane invaginates, bringing the substance and the proteins into the cell. If passage across the membrane of the target of receptor-mediated endocytosis    is ineffective, it will not be removed from the tissue fluids or blood. Instead, it will stay in those fluids and increase in concentration. Some human diseases are caused by a failure of receptor-mediated endocytosis. For example, the form of cholesterol termed low-density lipoprotein or LDL (also referred to as “bad” cholesterol) is removed from the blood by receptor-mediated endocytosis. In the human genetic disease familial hypercholesterolemia, the LDL receptors are defective or missing entirely. People with this condition have life-threatening levels of cholesterol in their blood, because their cells cannot clear the chemical from their blood.

Concept in action

See receptor-mediated endocytosis in action and click on different parts for a focused animation to learn more.

Exocytosis

In contrast to these methods of moving material into a cell is the process of exocytosis. Exocytosis is the opposite of the processes discussed above in that its purpose is to expel material from the cell into the extracellular fluid. A particle enveloped in membrane fuses with the interior of the plasma membrane. This fusion opens the membranous envelope to the exterior of the cell, and the particle is expelled into the extracellular space ( [link] ).

A vesicle containing waste products is shown in the cytoplasm. The vesicle migrates to the cell membrane. The membrane of the vesicle fuses with the cell membrane, and the contents of the vesicle are released to the extracellular fluid.
In exocytosis, a vesicle migrates to the plasma membrane, binds, and releases its contents to the outside of the cell. (credit: modification of work by Mariana Ruiz Villarreal)

Section summary

The combined gradient that affects an ion includes its concentration gradient and its electrical gradient. Living cells need certain substances in concentrations greater than they exist in the extracellular space. Moving substances up their electrochemical gradients requires energy from the cell. Active transport uses energy stored in ATP to fuel the transport. Active transport of small molecular-size material uses integral proteins in the cell membrane to move the material—these proteins are analogous to pumps. Some pumps, which carry out primary active transport, couple directly with ATP to drive their action. In secondary transport, energy from primary transport can be used to move another substance into the cell and up its concentration gradient.

Endocytosis methods require the direct use of ATP to fuel the transport of large particles such as macromolecules; parts of cells or whole cells can be engulfed by other cells in a process called phagocytosis. In phagocytosis, a portion of the membrane invaginates and flows around the particle, eventually pinching off and leaving the particle wholly enclosed by an envelope of plasma membrane. Vacuoles are broken down by the cell, with the particles used as food or dispatched in some other way. Pinocytosis is a similar process on a smaller scale. The cell expels waste and other particles through the reverse process, exocytosis. Wastes are moved outside the cell, pushing a membranous vesicle to the plasma membrane, allowing the vesicle to fuse with the membrane and incorporating itself into the membrane structure, releasing its contents to the exterior of the cell.

Questions & Answers

must all prokaryotic cells posses a cell wall?
chris Reply
what is biology?
Cathy Reply
biology is basically the study of life
Robert
that's true
Tonia
it's the study of living things
Tonia
What is a celiac disease
Falase Reply
distinguish between properties and characteristics
Elee Reply
what are organelles
Elee
organelles are substances that makes up a cell
chris
what is biology
Prevail Reply
biology is science that studies life
Elee
it's the study of living and non living things
now that we have an estimate for the diameter of the cell.what estimate can we make about the volume of the cell?
faxhood Reply
why too much insulin result in low blood sugar
Leri Reply
For example, too much exercise can cost you to lose to much weight. Too much insulin will pull to much sugar out of your systemic system into your cells.
Eric
difference between DNA and RNA
Eyitayo Reply
DNA is deoxyribonuclaic acid. Deoxy refers to a lack of oxygen. The Ribose moity is missing an OH group. I think it is missing from the second C of the ring. RNA is ribonucleic acid. DNA has our genetic code in on it. RNA is translated from DNA and carries the blue print for protein synthesis.
Eric
The OH group on RNA prevents it from being reactive. But it is very unstable though. Would you want such a power tool floating around in your body, no. And you have three types of RNA: mRNA, tRNA and rRNA. Please let me know it this helped?😄
Eric
o
Browse
Eric answered this question perfectly
what determines the aeration level in the soil
Shola Reply
what is homeostasis?
Sarita Reply
It means balance in a biological system.
Eric
What is biology
Don Reply
Biology z the study of life
GOLDEN
what's biology
buran
biology is the study of living nd none living organism
Chinaza
Biology is the study of life
Quadri
yes Sir
Said
what's cell biology
Prince
biology is the study of life
Raheal
Biology is a science subject that deals with the study of living things and how they interact with there environment
chris
what is asexual reproduction,?
Awoi Reply
A type of reproduction which does not involve the fusion of gametes or a change in the number of chromosomes
Serena
Reproduction without sex... In which form a single organism or cell makes a copy of itself.
Serena
Please explain the concept of mitosis and meiosis
Serena
I guess you could use it for study buddies and brushing up on what you need to
Serena
what is mitosis
Klp
Asexual reproduction?
Serena
why pepsin and trypsin released in active form?
Yacqub
mitosis is the type cell division in which two daughter cells have same no. of chormosomes
syed
Hi
Don
chromosome number remains the same in mitosis
mc
Ello
Henry
Hii
Nikky
Yrr help me.
Nikky
Physical chemistry..... Koi h jo mujhe physical chem ki notes send kr ske
Nikky
what is asexual reproduction
Targbe
what makes golgi body in plants
Abdulkareem Reply
name the membrane of the plants
Abdulkareem
how can turners syndrome be corrected before birth
Balinda
which animal survive from being preyed just because of being humble, slow, and not aggressive
Balinda
Plants have golgi body's also. Plants are eukaryotic cells. And membrane bound organelles are a characteristic of eukaryotic cells. Moreover golgi body's are creatted from the ER. Also do not forget plants have plastids and animal cells do not.
Eric
During organs transplantation, the organs cannot be taken from just anybody since the graft would be rejected sooner or later due to
Liter Reply
Non-MHC compatibility on the organ and an attack from the patient's immune system.
Eric
what makes golgi body in plants
Abdulkareem
why trypsin and pepsin released in active form
Yacqub
Let us remember MHC'S on our cells. This is how our cells determine self from n o n s e l f. Transplanted tissue has to have a certain amount markers. These have to match to the recipiant's markers. Even with this, immunosuppresant medacine is prescribed to the recipient.
Eric
Even with these measures the body may still reject the transport. This can occur even after the recipient excepting the transport for some time.
Eric
what is integument system
Joy Reply
This system is our skin. This includes the skin lining our alimentary system which includes the tissue from our mouth to our anus. Our skin is our largest organ system. It is mostly made up of epithelial tissue.
Eric

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concepts of biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11487/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of biology' conversation and receive update notifications?

Ask