<< Chapter < Page Chapter >> Page >
Telomerase has an associated RNA that complements the 5' overhang at the end of the chromosome. The RNA template is used to synthesize the complementary strand. Telomerase then shifts, and the process is repeated. Next, primase and DNA polymerase synthesize the rest of the complementary strand.
The ends of linear chromosomes are maintained by the action of the telomerase enzyme.

Telomerase is typically found to be active in germ cells, adult stem cells, and some cancer cells. For her discovery of telomerase and its action, Elizabeth Blackburn ( [link] ) received the Nobel Prize for Medicine and Physiology in 2009.

Photo shows Elizabeth Blackburn.
Elizabeth Blackburn, 2009 Nobel Laureate, was the scientist who discovered how telomerase works. (credit: U.S. Embassy, Stockholm, Sweden)

Telomerase is not active in adult somatic cells. Adult somatic cells that undergo cell division continue to have their telomeres shortened. This essentially means that telomere shortening is associated with aging. In 2010, scientists found that telomerase can reverse some age-related conditions in mice, and this may have potential in regenerative medicine. Mariella Jaskelioff, et al., “Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice,” Nature , 469 (2011):102–7. Telomerase-deficient mice were used in these studies; these mice have tissue atrophy, stem-cell depletion, organ system failure, and impaired tissue injury responses. Telomerase reactivation in these mice caused extension of telomeres, reduced DNA damage, reversed neurodegeneration, and improved functioning of the testes, spleen, and intestines. Thus, telomere reactivation may have potential for treating age-related diseases in humans.

Dna replication in prokaryotes

Recall that the prokaryotic chromosome is a circular molecule with a less extensive coiling structure than eukaryotic chromosomes. The eukaryotic chromosome is linear and highly coiled around proteins. While there are many similarities in the DNA replication process, these structural differences necessitate some differences in the DNA replication process in these two life forms.

DNA replication has been extremely well-studied in prokaryotes, primarily because of the small size of the genome and large number of variants available. Escherichia coli has 4.6 million base pairs in a single circular chromosome, and all of it gets replicated in approximately 42 minutes, starting from a single origin of replication and proceeding around the chromosome in both directions. This means that approximately 1000 nucleotides are added per second. The process is much more rapid than in eukaryotes. [link] summarizes the differences between prokaryotic and eukaryotic replications.

Differences between Prokaryotic and Eukaryotic Replications
Property Prokaryotes Eukaryotes
Origin of replication Single Multiple
Rate of replication 1000 nucleotides/s 50 to 100 nucleotides/s
Chromosome structure circular linear
Telomerase Not present Present

Concept in action

Click through a tutorial on DNA replication.

Dna repair

DNA polymerase can make mistakes while adding nucleotides. It edits the DNA by proofreading every newly added base. Incorrect bases are removed and replaced by the correct base, and then polymerization continues ( [link] a ). Most mistakes are corrected during replication, although when this does not happen, the mismatch repair    mechanism is employed. Mismatch repair enzymes recognize the wrongly incorporated base and excise it from the DNA, replacing it with the correct base ( [link] b ). In yet another type of repair, nucleotide excision repair    , the DNA double strand is unwound and separated, the incorrect bases are removed along with a few bases on the 5' and 3' end, and these are replaced by copying the template with the help of DNA polymerase ( [link] c ). Nucleotide excision repair is particularly important in correcting thymine dimers, which are primarily caused by ultraviolet light. In a thymine dimer, two thymine nucleotides adjacent to each other on one strand are covalently bonded to each other rather than their complementary bases. If the dimer is not removed and repaired it will lead to a mutation. Individuals with flaws in their nucleotide excision repair genes show extreme sensitivity to sunlight and develop skin cancers early in life.

 Part a shows DNA polymerase replicating a strand of DNA. The enzyme has accidentally inserted G opposite A, resulting in a bulge. The enzyme backs up to fix the error. In part b, the top illustration shows a replicated DNA strand with a G–T base mismatch. The bottom illustration shows the repaired DNA, which has the correct G–C base pairing. Part c shows  a DNA strand in which a thymine dimer has formed. An excision repair enzyme cuts out the section of DNA that contains the dimer so that it can be replaced with a normal base pair.
Proofreading by DNA polymerase (a) corrects errors during replication. In mismatch repair (b), the incorrectly added base is detected after replication. The mismatch repair proteins detect this base and remove it from the newly synthesized strand by nuclease action. The gap is now filled with the correctly paired base. Nucleotide excision (c) repairs thymine dimers. When exposed to UV, thymines lying adjacent to each other can form thymine dimers. In normal cells, they are excised and replaced.

Most mistakes are corrected; if they are not, they may result in a mutation    —defined as a permanent change in the DNA sequence. Mutations in repair genes may lead to serious consequences like cancer.

Section summary

DNA replicates by a semi-conservative method in which each of the two parental DNA strands act as a template for new DNA to be synthesized. After replication, each DNA has one parental or “old” strand, and one daughter or “new” strand.

Replication in eukaryotes starts at multiple origins of replication, while replication in prokaryotes starts from a single origin of replication. The DNA is opened with enzymes, resulting in the formation of the replication fork. Primase synthesizes an RNA primer to initiate synthesis by DNA polymerase, which can add nucleotides in only one direction. One strand is synthesized continuously in the direction of the replication fork; this is called the leading strand. The other strand is synthesized in a direction away from the replication fork, in short stretches of DNA known as Okazaki fragments. This strand is known as the lagging strand. Once replication is completed, the RNA primers are replaced by DNA nucleotides and the DNA is sealed with DNA ligase.

The ends of eukaryotic chromosomes pose a problem, as polymerase is unable to extend them without a primer. Telomerase, an enzyme with an inbuilt RNA template, extends the ends by copying the RNA template and extending one end of the chromosome. DNA polymerase can then extend the DNA using the primer. In this way, the ends of the chromosomes are protected. Cells have mechanisms for repairing DNA when it becomes damaged or errors are made in replication. These mechanisms include mismatch repair to replace nucleotides that are paired with a non-complementary base and nucleotide excision repair, which removes bases that are damaged such as thymine dimers.

Art connections

[link] You isolate a cell strain in which the joining together of Okazaki fragments is impaired and suspect that a mutation has occurred in an enzyme found at the replication fork. Which enzyme is most likely to be mutated?

[link] Ligase, as this enzyme joins together Okazaki fragments.

Got questions? Get instant answers now!

Questions & Answers

what are the properties of lipids?
Isiah Reply
They are: Fatty acids, fats, oils, waxes, phospholipid, glycolipids, steroids and some vitamins
Rachel
explain why a fresh water fish excrete ammonia
Leonard Reply
plz answer my question
Leonard
sorry i meant it has a nucleous unlike plant cells lol
Lailah
Ammonia is the end product of protein catabolism and is stored in the body of the fish in high concentrations relative to basal excretion rates. Ammonia, if allowed to accumulate, is toxic and is converted to less toxic compounds or excreted
Rachel
What are eukaryotic cells?
Nwosueke Reply
cell with no nucleous so not a plant cell
Lailah
eukaryotic cells are membrane bound organelles that have a membrane bound nucleus
ojeen
where does the cell get energy for active transport processes?
A'Kaysion Reply
IDK maybe glucose
Lailah
what is synapsis
Adepoju Reply
how many turns are required to make a molecule of sucrose in Calvin cycle
Amina Reply
why Calvin cycle occurs in stroma
Amina
why do humans enhale oxygen and exhale carbondioxide?
Maryam Reply
why do humans enhale oxygen and exhale carbondioxide? For the purpose of breaking down the food
dil
what is allele
uzoka Reply
process of protein synthesis
SANTOSH Reply
what is cell
Zulf Reply
a cell is a smallest basic, structural and functional unit of life that is capable of self replication
Lucas
why does a fresh water fish excrete ammonia
Leonard
plz answer my question
Leonard
Ammonia is a toxic colorless gas and when its inside the fish biological system is converted to a less toxic compound then excreted in the form of urea. However too much ammonia will kill the fish " Ammonia Poisoning " which is a very common disease among fish.
This
what is cytoplasm
uzoka Reply
cytoplasm is fluid of cell.
Deepak
how many major types of Cloning
Saeed Reply
two
amir
two
Zulf
comparative anatomy of gymnosperms?
Meenakshi Reply
anatomy of gymnosperms
Meenakshi
how genes are regulated
Ainjue Reply
what is storage of glycogen
Student Reply
glycogen is a protein content
Najeem

Get the best Concepts of biology course in your pocket!





Source:  OpenStax, Concepts of biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11487/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of biology' conversation and receive update notifications?

Ask