<< Chapter < Page Chapter >> Page >

Many enzymes do not work optimally, or even at all, unless bound to other specific non-protein helper molecules. They may bond either temporarily through ionic or hydrogen bonds, or permanently through stronger covalent bonds. Binding to these molecules promotes optimal shape and function of their respective enzymes. Two examples of these types of helper molecules are cofactors and coenzymes. Cofactors are inorganic ions such as ions of iron and magnesium. Coenzymes are organic helper molecules, those with a basic atomic structure made up of carbon and hydrogen. Like enzymes, these molecules participate in reactions without being changed themselves and are ultimately recycled and reused. Vitamins are the source of coenzymes. Some vitamins are the precursors of coenzymes and others act directly as coenzymes. Vitamin C is a direct coenzyme for multiple enzymes that take part in building the important connective tissue, collagen. Therefore, enzyme function is, in part, regulated by the abundance of various cofactors and coenzymes, which may be supplied by an organism’s diet or, in some cases, produced by the organism.

Feedback inhibition in metabolic pathways

Molecules can regulate enzyme function in many ways. The major question remains, however: What are these molecules and where do they come from? Some are cofactors and coenzymes, as you have learned. What other molecules in the cell provide enzymatic regulation such as allosteric modulation, and competitive and non-competitive inhibition? Perhaps the most relevant sources of regulatory molecules, with respect to enzymatic cellular metabolism, are the products of the cellular metabolic reactions themselves. In a most efficient and elegant way, cells have evolved to use the products of their own reactions for feedback inhibition of enzyme activity. Feedback inhibition involves the use of a reaction product to regulate its own further production ( [link] ). The cell responds to an abundance of the products by slowing down production during anabolic or catabolic reactions. Such reaction products may inhibit the enzymes that catalyzed their production through the mechanisms described above.

This diagram shows a metabolic pathway in which three enzymes convert a substrate, in three steps, into a final product. The final product inhibits the first enzyme in the pathway by feedback inhibition.
Metabolic pathways are a series of reactions catalyzed by multiple enzymes. Feedback inhibition, where the end product of the pathway inhibits an upstream process, is an important regulatory mechanism in cells.

The production of both amino acids and nucleotides is controlled through feedback inhibition. Additionally, ATP is an allosteric regulator of some of the enzymes involved in the catabolic breakdown of sugar, the process that creates ATP. In this way, when ATP is in abundant supply, the cell can prevent the production of ATP. On the other hand, ADP serves as a positive allosteric regulator (an allosteric activator) for some of the same enzymes that are inhibited by ATP. Thus, when relative levels of ADP are high compared to ATP, the cell is triggered to produce more ATP through sugar catabolism.

Section summary

Cells perform the functions of life through various chemical reactions. A cell’s metabolism refers to the combination of chemical reactions that take place within it. Catabolic reactions break down complex chemicals into simpler ones and are associated with energy release. Anabolic processes build complex molecules out of simpler ones and require energy.

In studying energy, the term system refers to the matter and environment involved in energy transfers. Entropy is a measure of the disorder of a system. The physical laws that describe the transfer of energy are the laws of thermodynamics. The first law states that the total amount of energy in the universe is constant. The second law of thermodynamics states that every energy transfer involves some loss of energy in an unusable form, such as heat energy. Energy comes in different forms: kinetic, potential, and free. The change in free energy of a reaction can be negative (releases energy, exergonic) or positive (consumes energy, endergonic). All reactions require an initial input of energy to proceed, called the activation energy.

Enzymes are chemical catalysts that speed up chemical reactions by lowering their activation energy. Enzymes have an active site with a unique chemical environment that fits particular chemical reactants for that enzyme, called substrates. Enzymes and substrates are thought to bind according to an induced-fit model. Enzyme action is regulated to conserve resources and respond optimally to the environment.

Art connections

[link] Look at each of the processes shown and decide if it is endergonic or exergonic.

[link] A compost pile decomposing is an exergonic process. A baby developing from a fertilized egg is an endergonic process. Tea dissolving into water is an exergonic process. A ball rolling downhill is an exergonic process.

Got questions? Get instant answers now!

Questions & Answers

what is biology?
Cathy Reply
What is a celiac disease
Falase Reply
distinguish between properties and characteristics
Elee Reply
what are organelles
what is biology
Prevail Reply
biology is science that studies life
it's the study of living and non living things
now that we have an estimate for the diameter of the cell.what estimate can we make about the volume of the cell?
faxhood Reply
why too much insulin result in low blood sugar
Leri Reply
For example, too much exercise can cost you to lose to much weight. Too much insulin will pull to much sugar out of your systemic system into your cells.
difference between DNA and RNA
Eyitayo Reply
DNA is deoxyribonuclaic acid. Deoxy refers to a lack of oxygen. The Ribose moity is missing an OH group. I think it is missing from the second C of the ring. RNA is ribonucleic acid. DNA has our genetic code in on it. RNA is translated from DNA and carries the blue print for protein synthesis.
The OH group on RNA prevents it from being reactive. But it is very unstable though. Would you want such a power tool floating around in your body, no. And you have three types of RNA: mRNA, tRNA and rRNA. Please let me know it this helped?😄
Eric answered this question perfectly
what determines the aeration level in the soil
Shola Reply
what is homeostasis?
Sarita Reply
It means balance in a biological system.
What is biology
Don Reply
Biology z the study of life
what's biology
biology is the study of living nd none living organism
Biology is the study of life
yes Sir
what's cell biology
biology is the study of life
what is asexual reproduction,?
Awoi Reply
A type of reproduction which does not involve the fusion of gametes or a change in the number of chromosomes
Reproduction without sex... In which form a single organism or cell makes a copy of itself.
Please explain the concept of mitosis and meiosis
I guess you could use it for study buddies and brushing up on what you need to
what is mitosis
Asexual reproduction?
why pepsin and trypsin released in active form?
mitosis is the type cell division in which two daughter cells have same no. of chormosomes
chromosome number remains the same in mitosis
Yrr help me.
Physical chemistry..... Koi h jo mujhe physical chem ki notes send kr ske
what is asexual reproduction
what makes golgi body in plants
Abdulkareem Reply
name the membrane of the plants
how can turners syndrome be corrected before birth
which animal survive from being preyed just because of being humble, slow, and not aggressive
Plants have golgi body's also. Plants are eukaryotic cells. And membrane bound organelles are a characteristic of eukaryotic cells. Moreover golgi body's are creatted from the ER. Also do not forget plants have plastids and animal cells do not.
During organs transplantation, the organs cannot be taken from just anybody since the graft would be rejected sooner or later due to
Liter Reply
Non-MHC compatibility on the organ and an attack from the patient's immune system.
what makes golgi body in plants
why trypsin and pepsin released in active form
Let us remember MHC'S on our cells. This is how our cells determine self from n o n s e l f. Transplanted tissue has to have a certain amount markers. These have to match to the recipiant's markers. Even with this, immunosuppresant medacine is prescribed to the recipient.
Even with these measures the body may still reject the transport. This can occur even after the recipient excepting the transport for some time.
what is integument system
Joy Reply
This system is our skin. This includes the skin lining our alimentary system which includes the tissue from our mouth to our anus. Our skin is our largest organ system. It is mostly made up of epithelial tissue.
Cellular respiration
Lucy Reply
This is how our cells make energy. They use glucose + oxygen. There are other facors involves also. But these are the main two reactant used, for aerobic respiration. The main product is ATP. ATP is a high energy molecule which is paramount for life.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play

Source:  OpenStax, Concepts of biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11487/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of biology' conversation and receive update notifications?