<< Chapter < Page Chapter >> Page >
 Photos A and B show what appears to be virtually identical looking wasps, but B is actually a harmless hoverfly.
One form of mimicry is when a harmless species mimics the coloration of a harmful species, as is seen with the (a) wasp ( Polistes sp.) and the (b) hoverfly ( Syrphus sp.). (credit: modification of work by Tom Ings)

In other cases of mimicry, multiple species share the same warning coloration, but all of them actually have defenses. The commonness of the signal improves the compliance of all the potential predators. [link] shows a variety of foul-tasting butterflies with similar coloration.

 Photos show four pairs of butterflies that are virtually identical to one another in color and banding pattern.
Several unpleasant-tasting Heliconius butterfly species share a similar color pattern with better-tasting varieties, an example of mimicry. (credit: Joron M, Papa R, Beltrán M, Chamberlain N, Mavárez J, et al.)

Concept in action

Go to this website to view stunning examples of mimicry.

Competitive exclusion principle

Resources are often limited within a habitat and multiple species may compete to obtain them. Ecologists have come to understand that all species have an ecological niche. A niche is the unique set of resources used by a species, which includes its interactions with other species. The competitive exclusion principle    states that two species cannot occupy the same niche in a habitat: in other words, different species cannot coexist in a community if they are competing for all the same resources. This principle works because if there is an overlap in resource use and therefore competition between two species, then traits that lessen reliance on the shared resource will be selected for leading to evolution that reduces the overlap. If either species is unable to evolve to reduce competition, then the species that most efficiently exploits the resource will drive the other species to extinction. An experimental example of this principle is shown in [link] with two protozoan species: Paramecium aurelia and Paramecium caudatum . When grown individually in the laboratory, they both thrive. But when they are placed together in the same test tube (habitat), P. aurelia outcompetes P. caudatum for food, leading to the latter’s eventual extinction.

 The three graphs all plot number of cells versus time in days. In Graph (a), P. aurelia is grown alone. In graph (b), P. caudatum is grown alone. In graph (c), the two species are grown together. When grown together, the two species both exhibit logistic growth and grow to a relatively high cell density. When the two species are grown together, P. aurelia shows logistic growth to nearly the same cell density as it exhibited when grown alone, but P. caudatum hardly grows at all, and eventually its population drops to zero.
Paramecium aurelia and Paramecium caudatum grow well individually, but when they compete for the same resources, the P. aurelia outcompetes the P. caudatum .

Symbiosis

Symbiotic relationships are close, long-term interactions between individuals of different species. Symbioses may be commensal, in which one species benefits while the other is neither harmed nor benefited; mutualistic, in which both species benefit; or parasitic, in which the interaction harms one species and benefits the other.

Commensalism

A commensal relationship occurs when one species benefits from a close prolonged interaction, while the other neither benefits nor is harmed. Birds nesting in trees provide an example of a commensal relationship ( [link] ). The tree is not harmed by the presence of the nest among its branches. The nests are light and produce little strain on the structural integrity of the branch, and most of the leaves, which the tree uses to get energy by photosynthesis, are above the nest so they are unaffected. The bird, on the other hand, benefits greatly. If the bird had to nest in the open, its eggs and young would be vulnerable to predators. Many potential commensal relationships are difficult to identify because it is difficult to prove that one partner does not derive some benefit from the presence of the other.

Questions & Answers

what are the properties of lipids?
Isiah Reply
They are: Fatty acids, fats, oils, waxes, phospholipid, glycolipids, steroids and some vitamins
Rachel
explain why a fresh water fish excrete ammonia
Leonard Reply
plz answer my question
Leonard
sorry i meant it has a nucleous unlike plant cells lol
Lailah
Ammonia is the end product of protein catabolism and is stored in the body of the fish in high concentrations relative to basal excretion rates. Ammonia, if allowed to accumulate, is toxic and is converted to less toxic compounds or excreted
Rachel
What are eukaryotic cells?
Nwosueke Reply
cell with no nucleous so not a plant cell
Lailah
eukaryotic cells are membrane bound organelles that have a membrane bound nucleus
ojeen
where does the cell get energy for active transport processes?
A'Kaysion Reply
IDK maybe glucose
Lailah
what is synapsis
Adepoju Reply
how many turns are required to make a molecule of sucrose in Calvin cycle
Amina Reply
why Calvin cycle occurs in stroma
Amina
why do humans enhale oxygen and exhale carbondioxide?
Maryam Reply
why do humans enhale oxygen and exhale carbondioxide? For the purpose of breaking down the food
dil
what is allele
uzoka Reply
process of protein synthesis
SANTOSH Reply
what is cell
Zulf Reply
a cell is a smallest basic, structural and functional unit of life that is capable of self replication
Lucas
why does a fresh water fish excrete ammonia
Leonard
plz answer my question
Leonard
Ammonia is a toxic colorless gas and when its inside the fish biological system is converted to a less toxic compound then excreted in the form of urea. However too much ammonia will kill the fish " Ammonia Poisoning " which is a very common disease among fish.
This
what is cytoplasm
uzoka Reply
cytoplasm is fluid of cell.
Deepak
how many major types of Cloning
Saeed Reply
two
amir
two
Zulf
comparative anatomy of gymnosperms?
Meenakshi Reply
anatomy of gymnosperms
Meenakshi
how genes are regulated
Ainjue Reply
what is storage of glycogen
Student Reply
glycogen is a protein content
Najeem

Get the best Concepts of biology course in your pocket!





Source:  OpenStax, Concepts of biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11487/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of biology' conversation and receive update notifications?

Ask