<< Chapter < Page Chapter >> Page >


In addition to these macronutrients, prokaryotes require various metallic elements in small amounts. These are referred to as micronutrients or trace elements. For example, iron is necessary for the function of the cytochromes involved in electron-transport reactions. Some prokaryotes require other elements—such as boron (B), chromium (Cr), and manganese (Mn)—primarily as enzyme cofactors.

The ways in which prokaryotes obtain energy

Prokaryotes can use different sources of energy to assemble macromolecules from smaller molecules. Phototrophs (or phototrophic organisms) obtain their energy from sunlight. Chemotrophs (or chemosynthetic organisms) obtain their energy from chemical compounds. Chemotrophs that can use organic compounds as energy sources are called chemoorganotrophs. Those that can also use inorganic compounds as energy sources are called chemolitotrophs.

The ways in which prokaryotes obtain carbon

Prokaryotes not only can use different sources of energy but also different sources of carbon compounds. Recall that organisms that are able to fix inorganic carbon are called autotrophs. Autotrophic prokaryotes synthesize organic molecules from carbon dioxide. In contrast, heterotrophic prokaryotes obtain carbon from organic compounds. To make the picture more complex, the terms that describe how prokaryotes obtain energy and carbon can be combined. Thus, photoautotrophs use energy from sunlight, and carbon from carbon dioxide and water, whereas chemoheterotrophs obtain energy and carbon from an organic chemical source. Chemolitoautotrophs obtain their energy from inorganic compounds, and they build their complex molecules from carbon dioxide. The table below ( [link] ) summarizes carbon and energy sources in prokaryotes.

Carbon and Energy Sources in Prokaryotes
Energy Sources Carbon Sources
Light Chemicals Carbon dioxide Organic compounds
Phototrophs Chemotrophs Autotrophs Heterotrophs
Organic chemicals Inorganic chemicals
Chemo-organotrophs Chemolithotrophs

Role of prokaryotes in ecosystems

Prokaryotes are ubiquitous: There is no niche or ecosystem in which they are not present. Prokaryotes play many roles in the environments they occupy. The roles they play in the carbon and nitrogen cycles are vital to life on Earth.

Prokaryotes and the carbon cycle

Carbon is one of the most important macronutrients, and prokaryotes play an important role in the carbon cycle ( [link] ). Carbon is cycled through Earth’s major reservoirs: land, the atmosphere, aquatic environments, sediments and rocks, and biomass. The movement of carbon is via carbon dioxide, which is removed from the atmosphere by land plants and marine prokaryotes, and is returned to the atmosphere via the respiration of chemoorganotrophic organisms, including prokaryotes, fungi, and animals. Although the largest carbon reservoir in terrestrial ecosystems is in rocks and sediments, that carbon is not readily available.

A large amount of available carbon is found in land plants. Plants, which are producers, use carbon dioxide from the air to synthesize carbon compounds. Related to this, one very significant source of carbon compounds is humus, which is a mixture of organic materials from dead plants and prokaryotes that have resisted decomposition. Consumers such as animals use organic compounds generated by producers and release carbon dioxide to the atmosphere. Then, bacteria and fungi, collectively called decomposers , carry out the breakdown (decomposition) of plants and animals and their organic compounds. The most important contributor of carbon dioxide to the atmosphere is microbial decomposition of dead material (dead animals, plants, and humus) that undergo respiration.

Questions & Answers

hetreothalism in fungi
Lekhram Reply
there are 3 trimester in human pregnancy
I don't know answer of this question can u help me
what is a cell
Fatima Reply
A cell is functional and structural unit of life.
what is genetic
Janet Reply
I join
what are the branchas of biology
Prisca Reply
zoology, ecology
genetics, microbiology,botany and embryology
what is a cell
Kulunbawi Reply
cell is smallest unit of life. cells are often cell the building blocks of life...
the first twenty element
Orapinega Reply
what are the characteristics of living things?
growth,respiration,nutrition,sensitivity, movement,irritability, excretion,death.
What is the difference between adaptation and competition in animals
Adeyemi Reply
What is biology
it is a natural science stadey about living things
Biology is the bronch of science which deals with the study of life is called biology
what is the x in 300 stands for?
Ogbudu Reply
the properties of life
Clarinda Reply
response to the environment, reproduction, homeostasis, growth,energy processing etc.....
what is reproduction
Reproduction is a fundamental feature of all known life,each individual organism exist as a result of re production.....or else Multiplying...
a complete virus particle known as
Darlington Reply
These are formed from identical protein subunitscalled capsomeres.
fabace family plant name
Pushpam Reply
in eukaryotes ...protein channel name which transport protein ...
Pushpam Reply
in bacteria ...chromosomal dna duplicate structure called
what is a prokaryotic cell and a eukaryotic cell
Matilda Reply
There are two types of cells. Eukaryotic and Prokaryotic cells. Prokaryotic cells don't have a nucleus or membrane enclosed organelles (little organs within that cell). They do however carry genetic material but it's not maintained in the nucleus. Prokaryotic cells are also one celled.
Prokaryotic cells are one celled (single celled).
Prokaryotic cells are Bacteria and Archea
Prokaryotic cells are smaller than Eukaryotic cells.
Eukaryotic cells are more complex. They are much bigger than Prokaryotic cells.
Eukaryotic cells have a nucleus and membrane bound organelles.
Eukaryotic cells are animals cells which also includes us.
Eukaryotic cells are also multicellular.
nice explaination
eukaryotic cells are individual cells .. but eukaryotes are multicellular organisms which consist of many different types of eukaryotic cells
also eukaryotic cells have mitochondria. prokaryotic cells do not
in prokaryotes only ribosomes are present... in eukaryotes mitochondria ...glogi bodies ..epidermis .....prokaryotes one envelop but eukaryotes compartment envelop....envelop mean membrane bound organelles......
prokaryotic cell are cells dat have no true nuclei i.e no cell membrane while eukaryotic cell are cell dat have true nuclei i.e have cell membrane
we have 46 pair of somatic cell and 23 pair of chromosomes in our body, pls can someone explain it to me. pls
Matilda Reply
we have 22 pairs of somatic chromosomes and one pair of sex chromosome
we have 23 pairs of chromosomes,22 pairs of somatic and one pair of sex chromosomes
23 chromosomes from dad & 23 chromosomes from mom 23 +23=46 total chromosomes
X & Y chromosomes are called sex cells, the very presence of a Y chromosome means the person is Male.
XX Female XY Male
If a Karyotype has more than 46 Chromosomes then nondisjunction occured. For example, having an extra chromosome 21 will cause Down Syndrome.

Get the best Biology course in your pocket!

Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?