<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • List the different steps in prokaryotic transcription
  • Discuss the role of promoters in prokaryotic transcription
  • Describe how and when transcription is terminated

The prokaryotes, which include bacteria and archaea, are mostly single-celled organisms that, by definition, lack membrane-bound nuclei and other organelles. A bacterial chromosome is a covalently closed circle that, unlike eukaryotic chromosomes, is not organized around histone proteins. The central region of the cell in which prokaryotic DNA resides is called the nucleoid. In addition, prokaryotes often have abundant plasmids , which are shorter circular DNA molecules that may only contain one or a few genes. Plasmids can be transferred independently of the bacterial chromosome during cell division and often carry traits such as antibiotic resistance.

Transcription in prokaryotes (and in eukaryotes) requires the DNA double helix to partially unwind in the region of mRNA synthesis. The region of unwinding is called a transcription bubble. Transcription always proceeds from the same DNA strand for each gene, which is called the template strand    . The mRNA product is complementary to the template strand and is almost identical to the other DNA strand, called the nontemplate strand    . The only difference is that in mRNA, all of the T nucleotides are replaced with U nucleotides. In an RNA double helix, A can bind U via two hydrogen bonds, just as in A–T pairing in a DNA double helix.

The nucleotide pair in the DNA double helix that corresponds to the site from which the first 5' mRNA nucleotide is transcribed is called the +1 site, or the initiation site    . Nucleotides preceding the initiation site are given negative numbers and are designated upstream    . Conversely, nucleotides following the initiation site are denoted with “+” numbering and are called downstream    nucleotides.

Initiation of transcription in prokaryotes

Prokaryotes do not have membrane-enclosed nuclei. Therefore, the processes of transcription, translation, and mRNA degradation can all occur simultaneously. The intracellular level of a bacterial protein can quickly be amplified by multiple transcription and translation events occurring concurrently on the same DNA template. Prokaryotic transcription often covers more than one gene and produces polycistronic mRNAs that specify more than one protein.

Our discussion here will exemplify transcription by describing this process in Escherichia coli , a well-studied bacterial species. Although some differences exist between transcription in E. coli and transcription in archaea, an understanding of E. coli transcription can be applied to virtually all bacterial species.

Prokaryotic rna polymerase

Prokaryotes use the same RNA polymerase to transcribe all of their genes. In E. coli , the polymerase is composed of five polypeptide subunits, two of which are identical. Four of these subunits, denoted α , α , β , and β ' comprise the polymerase core enzyme    . These subunits assemble every time a gene is transcribed, and they disassemble once transcription is complete. Each subunit has a unique role; the two α -subunits are necessary to assemble the polymerase on the DNA; the β -subunit binds to the ribonucleoside triphosphate that will become part of the nascent “recently born” mRNA molecule; and the β ' binds the DNA template strand. The fifth subunit, σ , is involved only in transcription initiation. It confers transcriptional specificity such that the polymerase begins to synthesize mRNA from an appropriate initiation site. Without σ , the core enzyme would transcribe from random sites and would produce mRNA molecules that specified protein gibberish. The polymerase comprised of all five subunits is called the holoenzyme    .

Questions & Answers

there are 3 trimester in human pregnancy
I don't know answer of this question can u help me
what is a cell
Fatima Reply
what is genetic
Janet Reply
I join
what are the branchas of biology
Prisca Reply
zoology, ecology
genetics, microbiology,botany and embryology
what is a cell
Kulunbawi Reply
cell is smallest unit of life. cells are often cell the building blocks of life...
the first twenty element
Orapinega Reply
what are the characteristics of living things?
growth,respiration,nutrition,sensitivity, movement,irritability, excretion,death.
What is the difference between adaptation and competition in animals
Adeyemi Reply
What is biology
it is a natural science stadey about living things
Biology is the bronch of science which deals with the study of life is called biology
what is the x in 300 stands for?
Ogbudu Reply
the properties of life
Clarinda Reply
response to the environment, reproduction, homeostasis, growth,energy processing etc.....
what is reproduction
Reproduction is a fundamental feature of all known life,each individual organism exist as a result of re production.....or else Multiplying...
a complete virus particle known as
Darlington Reply
These are formed from identical protein subunitscalled capsomeres.
fabace family plant name
Pushpam Reply
in eukaryotes ...protein channel name which transport protein ...
Pushpam Reply
in bacteria ...chromosomal dna duplicate structure called
what is a prokaryotic cell and a eukaryotic cell
Matilda Reply
There are two types of cells. Eukaryotic and Prokaryotic cells. Prokaryotic cells don't have a nucleus or membrane enclosed organelles (little organs within that cell). They do however carry genetic material but it's not maintained in the nucleus. Prokaryotic cells are also one celled.
Prokaryotic cells are one celled (single celled).
Prokaryotic cells are Bacteria and Archea
Prokaryotic cells are smaller than Eukaryotic cells.
Eukaryotic cells are more complex. They are much bigger than Prokaryotic cells.
Eukaryotic cells have a nucleus and membrane bound organelles.
Eukaryotic cells are animals cells which also includes us.
Eukaryotic cells are also multicellular.
nice explaination
eukaryotic cells are individual cells .. but eukaryotes are multicellular organisms which consist of many different types of eukaryotic cells
also eukaryotic cells have mitochondria. prokaryotic cells do not
in prokaryotes only ribosomes are present... in eukaryotes mitochondria ...glogi bodies ..epidermis .....prokaryotes one envelop but eukaryotes compartment envelop....envelop mean membrane bound organelles......
prokaryotic cell are cells dat have no true nuclei i.e no cell membrane while eukaryotic cell are cell dat have true nuclei i.e have cell membrane
we have 46 pair of somatic cell and 23 pair of chromosomes in our body, pls can someone explain it to me. pls
Matilda Reply
we have 22 pairs of somatic chromosomes and one pair of sex chromosome
we have 23 pairs of chromosomes,22 pairs of somatic and one pair of sex chromosomes
23 chromosomes from dad & 23 chromosomes from mom 23 +23=46 total chromosomes
X & Y chromosomes are called sex cells, the very presence of a Y chromosome means the person is Male.
XX Female XY Male
If a Karyotype has more than 46 Chromosomes then nondisjunction occured. For example, having an extra chromosome 21 will cause Down Syndrome.
in mammal state the different vertebrae and their location in the body
Igbinigie Reply

Get the best Biology course in your pocket!

Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?