<< Chapter < Page Chapter >> Page >

Art connection

Illustration A shows an artery branching off into an arteriole, which branches into a capillary bed. The start of each capillary has a sphincter regulating flow through it. The capillaries converge into a venule, which joins a vein. Part B shows a valve in a blood vessel. The valve is slightly curved such that flow in one direction pushes it open, while flow in the other direction pushes it closed.
(a) Precapillary sphincters are rings of smooth muscle that regulate the flow of blood through capillaries; they help control the location of blood flow to where it is needed. (b) Valves in the veins prevent blood from moving backward. (credit a: modification of work by NCI)

Varicose veins are veins that become enlarged because the valves no longer close properly, allowing blood to flow backward. Varicose veins are often most prominent on the legs. Why do you think this is the case?

Visit this site to see the circulatory system’s blood flow.

Proteins and other large solutes cannot leave the capillaries. The loss of the watery plasma creates a hyperosmotic solution within the capillaries, especially near the venules. This causes about 85% of the plasma that leaves the capillaries to eventually diffuses back into the capillaries near the venules. The remaining 15% of blood plasma drains out from the interstitial fluid into nearby lymphatic vessels ( [link] ). The fluid in the lymph is similar in composition to the interstitial fluid. The lymph fluid passes through lymph nodes before it returns to the heart via the vena cava. Lymph nodes are specialized organs that filter the lymph by percolation through a maze of connective tissue filled with white blood cells. The white blood cells remove infectious agents, such as bacteria and viruses, to clean the lymph before it returns to the bloodstream. After it is cleaned, the lymph returns to the heart by the action of smooth muscle pumping, skeletal muscle action, and one-way valves joining the returning blood near the junction of the venae cavae entering the right atrium of the heart.

Illustration shows an arteriole and a venule branching off into a capillary bed. Lymph capillaries surround the capillary bed. Fluid diffuse from the blood vessels into the lymphatic vessels.
Fluid from the capillaries moves into the interstitial space and lymph capillaries by diffusion down a pressure gradient and also by osmosis. Out of 7,200 liters of fluid pumped by the average heart in a day, over 1,500 liters is filtered. (credit: modification of work by NCI, NIH)

Evolution connection

Vertebrate diversity in blood circulation

Blood circulation has evolved differently in vertebrates and may show variation in different animals for the required amount of pressure, organ and vessel location, and organ size. Animals with longs necks and those that live in cold environments have distinct blood pressure adaptations.

Long necked animals, such as giraffes, need to pump blood upward from the heart against gravity. The blood pressure required from the pumping of the left ventricle would be equivalent to 250 mm Hg (mm Hg = millimeters of mercury, a unit of pressure) to reach the height of a giraffe’s head, which is 2.5 meters higher than the heart. However, if checks and balances were not in place, this blood pressure would damage the giraffe’s brain, particularly if it was bending down to drink. These checks and balances include valves and feedback mechanisms that reduce the rate of cardiac output. Long-necked dinosaurs such as the sauropods had to pump blood even higher, up to ten meters above the heart. This would have required a blood pressure of more than 600 mm Hg, which could only have been achieved by an enormous heart. Evidence for such an enormous heart does not exist and mechanisms to reduce the blood pressure required include the slowing of metabolism as these animals grew larger. It is likely that they did not routinely feed on tree tops but grazed on the ground.

Living in cold water, whales need to maintain the temperature in their blood. This is achieved by the veins and arteries being close together so that heat exchange can occur. This mechanism is called a countercurrent heat exchanger. The blood vessels and the whole body are also protected by thick layers of blubber to prevent heat loss. In land animals that live in cold environments, thick fur and hibernation are used to retain heat and slow metabolism.

Blood pressure

The pressure of the blood flow in the body is produced by the hydrostatic pressure of the fluid (blood) against the walls of the blood vessels. Fluid will move from areas of high to low hydrostatic pressures. In the arteries, the hydrostatic pressure near the heart is very high and blood flows to the arterioles where the rate of flow is slowed by the narrow openings of the arterioles. During systole, when new blood is entering the arteries, the artery walls stretch to accommodate the increase of pressure of the extra blood; during diastole, the walls return to normal because of their elastic properties. The blood pressure of the systole phase and the diastole phase, graphed in [link] , gives the two pressure readings for blood pressure. For example, 120/80 indicates a reading of 120 mm Hg during the systole and 80 mm Hg during diastole. Throughout the cardiac cycle, the blood continues to empty into the arterioles at a relatively even rate. This resistance to blood flow is called peripheral resistance    .

Graph A shows blood pressure, which starts high in the arteries and gradually drops as blood passes through the capillaries and veins. Blood velocity drops gradually in the arteries, then precipitously in the capillaries. Velocity increases as blood enters the veins. In the arteries, both blood pressure and velocity fluctuate to a higher level during diastole and a lower level during systole.
Blood pressure is related to the blood velocity in the arteries and arterioles. In the capillaries and veins, the blood pressure continues to decease but velocity increases.

Blood pressure regulation

Cardiac output is the volume of blood pumped by the heart in one minute. It is calculated by multiplying the number of heart contractions that occur per minute (heart rate) times the stroke volume (the volume of blood pumped into the aorta per contraction of the left ventricle). Therefore, cardiac output can be increased by increasing heart rate, as when exercising. However, cardiac output can also be increased by increasing stroke volume, such as if the heart contracts with greater strength. Stroke volume can also be increased by speeding blood circulation through the body so that more blood enters the heart between contractions. During heavy exertion, the blood vessels relax and increase in diameter, offsetting the increased heart rate and ensuring adequate oxygenated blood gets to the muscles. Stress triggers a decrease in the diameter of the blood vessels, consequently increasing blood pressure. These changes can also be caused by nerve signals or hormones, and even standing up or lying down can have a great effect on blood pressure.

Section summary

Blood primarily moves through the body by the rhythmic movement of smooth muscle in the vessel wall and by the action of the skeletal muscle as the body moves. Blood is prevented from flowing backward in the veins by one-way valves. Blood flow through the capillary beds is controlled by precapillary sphincters to increase and decrease flow depending on the body’s needs and is directed by nerve and hormone signals. Lymph vessels take fluid that has leaked out of the blood to the lymph nodes where it is cleaned before returning to the heart. During systole, blood enters the arteries, and the artery walls stretch to accommodate the extra blood. During diastole, the artery walls return to normal. The blood pressure of the systole phase and the diastole phase gives the two pressure readings for blood pressure.

Art connections

[link] Varicose veins are veins that become enlarged because the valves no longer close properly, allowing blood to flow backward. Varicose veins are often most prominent on the legs. Why do you think this is the case?

[link] Blood in the legs is farthest away from the heart and has to flow up to reach it.

Got questions? Get instant answers now!

Questions & Answers

guys what is locomotion?
Misheal Reply
what is anatomy
Mohamed Reply
no idea
Benard
Anatomy is the branch of science that deals with the study of internal and external structures of an organism
Bigenis
Anatomy is the branch of science that deals with the study of the internal structure of an organism
Nana
what is locomotion?
Misheal
no idea
John
Locomotion may simply mean the movement of an organism from one point to another without permanent displacement of the organidm it'self
Bigenis
simply, its the ability to move
MissMeriiit
Thanks guys
Misheal
I have gotten it
Dickens
locomotion as an art student is the ability to move from on place to another
John
muscles that are concerned with locomotion
John
Anatomy deals with the study of internal structures of an organism
Osei
what are the theory if cells
Julius Reply
What's the function of epiglottis
Ugo Reply
What Is The Other Name For Intestinal Juice?
Justin Reply
what is the largestest planet of the universe
rick Reply
what are the types of cell
Bernard Reply
prokaryotic and eukaryotic
Yazi
prokaryotic cell and eukaryotic cell
Grace
what is the protein found in the blood?
Tobias Reply
globin
Joelia
Globin
globulins
EZRA
globulins
SASMITA
globulins
Grace
what is parasitic movement
Emmanuel Reply
Parasitic movement is a problem for all of us. So is its companion, parasitic tension. Parasitic movement is the excess contraction of muscles that you don't actually need to complete an action.
freya
HW a u
Nyandera
cool
Bigenis
am OK how a u
Ocen
absorption may simply mean utilization of food in the body
Bigenis
what are eukaryotic cells
Thiza Reply
eukaryotic cells which posses a true nucleus that is the DNA is enclosed and covered by a nuclear membrane
Grace
what is the mean of pair of chromosomes
Kazula Reply
hi
Lagos
23 haploid and 23diploid
Patson
how are you studying in this quarantine? .. how are you keeping yourselves motivated?
sivajijadhav @815.com
good morning guyz
Joelia
morning
Kazula
hi
Justin
Good
Angela
tell me if you know what can be used...than reading pls hint me pls 🙏🙏🙏
Angela
good, reading all alone is the best for me
Julius
what is the important of sex
Aremu Reply
why did human being need sex?
Aremu
because he/she have feelings
Chripine
reproduction...to make more
Yazi
due to active harmon
Manish
One important of sex is to reproduce
Emma
to ensure the countinuty of life
Yusuf
all of you are right
Edith
for sexual satisfaction and birth
Grace
what is momentum
Asiya Reply
The strength or force that allows something to continue or grow stronger or faster as time pass
Emma
What is Centripetal Force?
Justin
centrepital force is the inward force required to keep a body moving with constant speed in a circular path
Yusuf
what is the test for protein
Takii Reply

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask